
Idiomatic Patterns and Aesthetic  
Influence in Computer Music Languages

Andrew McPherson,
Centre for Digital Music, School of Electronic Engineering and Computer Science, Queen Mary
University of London, Mile End Road London, UK E1 4NS. E-mail: a.mcpherson@qmul.ac.uk

Koray Tahiroğlu,
Department of Media, Aalto University School of ARTS, PO Box 31000 FI-00076 AALTO Fin-
land. E-mail: koray.tahiroglu@aalto.fi

Abstract

It is widely accepted that acoustic and digital musical instruments shape the cognitive processes
of the performer on both embodied and conceptual levels, ultimately influencing the structure
and aesthetics of the resulting performance. In this article we examine the ways in which com-
puter music languages might similarly influence the aesthetic decisions of the digital music prac-
titioner, even when those languages are designed for generality and theoretically capable of im-
plementing any sound-producing process. We examine the basis for querying the non-neutrality
of tools with a particular focus on the concept of idiomaticity: patterns of instruments or lan-
guages which are particularly easy or natural to execute in comparison to others. We then
present correspondence with the developers of several major music programming languages
and a survey of digital musical instrument creators examining the relationship between idiomatic
patterns of the language and the characteristics of the resulting instruments and pieces. In an
open-ended creative domain, asserting causal relationships is difficult and potentially inappro-
priate, but we find a complex interplay between language, instrument, piece and performance
that suggests that the creator of the music programming language should be considered one
party to a creative conversation that occurs each time a new instrument is designed.

1. Introduction

Since the advent of electronic sound production, a strain of idealistic discourse has posited that
the new technology could create any sound imaginable (Theberge 1997). Such claims have
been made of early recording, analogue synthesis, digital synthesis, and they feature promi-
nently in the marketing of novel digital musical instruments (McPherson, Morreale and Harrison
2019). Indeed, utopian predictions accompany the introduction of many new technologies.
Whether the claims about music technology are intended as literal or metaphorical, historical
hindsight shows that the range of sounds producible by early analogue electronics was in fact
highly limited. Regarding control and interaction possibilities, future retrospectives may show
that our current digital instruments are likewise narrowly constrained. Still, even if we were to
achieve the utopian vision of a boundless space for musical exploration, we would still be left
with the question of what possibilities musicians would choose to explore within it. The design of
any tool favours certain types of thinking, certain modes of interaction, certain outcomes over
others. It is this non-neutrality in the context of music programming languages which we explore
in this article.

In musical interaction, as in many artistic fields, constraints can be a powerful creative motivator.
Magnusson (2010) describes the process of learning a digital musical instrument as ‘“getting a
feeling” for the instrument's constraints, rather than engaging with its affordances.’ Even the
simplest of digital musical instruments (DMIs) can nonetheless give rise to wide variations in
style (Gurevich, Marquez-Borbon and Stapleton 2012), and comparative studies have found that
adding more degrees of freedom to a DMI might paradoxically reduce the scope of a per-
former's exploration (Zappi and McPherson 2018). On one hand, constraints of acoustic instru-
ments were often seen as inspiring while in DMIs they were more often seen as frustrating, per-
haps out of the feeling that the instrument should be capable of anything. On the other hand,
Magnusson and Hurtado (2007) found that imposing constraints in music software was some-
times desirable, but that respondents drew a contrast between musically ‘directive’ software
(ProTools, Cubase, GarageBand) and ostensibly open-ended music programming languages
such as Csound, SuperCollider, ChucK, Pure Data (Pd) and Max.

This last point merits scrutiny. Unquestionably, languages like Pd and SuperCollider which con-
struct sounds from first principles present a wider space of possibilities with fewer limitations
compared to digital audio workstations. But are these tools really less directive? To what extent,
despite their hypothetical potential to express any imaginable sonic outcome, might these lan-
guages be nonetheless inscribed with their own specific aesthetic values and ideologies? How
might we discover these ideologies?

In this article we examine these questions through the lens of idiomaticity. We focus on new
digital musical instruments: instruments intended for live performance which involve a software
component created in a music programming language. Many but not all of these instruments
also include a hardware interface, but in this article we primarily examine the idiomatic patterns
suggested by the software. We do not directly consider fixed media composition, but many of
the ideas in the article may apply equally to software-based electroacoustic music beyond the
realm of digital musical instruments.

In essence, we argue that DMI designers' actions will be shaped by what a given language
makes most apparent, natural or easy to do, regardless of its (lack of) constraints. Through a
review of the literature and correspondence with the creators of commonly used computer mu-
sic languages, we will seek to understand some of the baseline assumptions and models inher-
ent in each language. Next, through a survey of DMI creators, we will look for influences of the
particular programming language on the aesthetic perspective of the instrument. We conclude
with some reflections on what aspects of a language might determine its idiomatic patterns and
how we might view the relationship between language creator and instrument designer.

2. Idiomaticity and Influence

Musicians will speak of a passage of music being idiomatic to an instrument. The idiomaticity of
a passage can be contrasted with its difficulty. Huron and Berec (2009) explain that an idiomatic
passage is one that ‘of all the ways a given musical goal or effect may be achieved, the method
employed by the composer/musician is one of the least difficult.’ In the realm of instrument de-
sign, an analogy can be drawn to Jorda's musical instrument efficiency, defined as the ratio of
musical output complexity to input complexity, while correcting for the diversity of control (Jorda
2005: 187).

Idiomaticity appears in many musical contexts. In improvisation, patterns which are natural to
the body-instrument relationship tend to form the basis of musical material (Sudnow 1978, de
Souza 2017). Composers often study how to write idiomatically for instruments, and many virtu-
osic showpieces are written idiomatically so that their apparent musical complexity exceeds the
actual difficulty of execution on the instrument. Vasquez, Tahiroğlu and Kildal (2017) explore id-
iomatic composition practice as a way of generating a repertoire for new digital instruments, as
well as development of a common framework for performance practices of novel instruments
(Tahiroğlu, Vasquez and Kildal 2017) while conversely Gurevich (2017) examines how reper-
toire can be used to inspire new instruments. Tahiroglu, Gurevich and Knapp (2018) link id-
iomaticity to the development of individual style: ‘A gesture vocabulary that is idiomatic to the
new musical instrument establishes a set of playing techniques for that instrument, which is in
turn an essential component of a developing a performance practice.... Only once such a reper-
toire of gestures and techniques has been established can the individual variations between
performances begin to develop the potential for 'expression' or style.’

Challenges to idiomaticity are also found in both acoustic and digital performance practice, in-
cluding jazz guitarist Kurt Rosenwinkel’s ‘voluntary self-sabotage’ or retuning his guitar to chal-
lenge his typical improvisation patterns (de Souza 2017) to the potentially engaging effect of in-
corporate disfluent characteristics into digital instruments (Bin, Bryan-Kinns, and McPherson
2018). Idiomaticity in traditional practice is sometimes linked to virtuosity, but virtuosity too is
often challenged in digital instrument practice (Gurevich and Treviño 2007, Morreale, McPher-
son and Wanderley 2018).

Idiomaticity need not be limited to embodied practice. For example, live coding performances
involve different kinds of feedback and decision-making than traditional instrumental perfor-
mance (Goldman 2019), but certain structures will nonetheless be more natural to the chosen
language than others. Nash (2015) applies the Cognitive Dimensions of Notation framework

(Green and Petre 1996) to two music software environments, examining each on dimensions
such as viscosity (resistance to change), visibility (ease of viewing) and hidden dependencies.
In considering what is idiomatic in a musical programming language, we should consider, as
Nash (2015) does, that these dimensions may not have a single global quantity across a lan-
guage, but that they might apply differently depending on the particular idea or structure being
expressed in the language.

2.1 The latent influence of tools

Sergi Jorda (2005) brings in a discussion that ‘music instruments are not only in charge of
transmitting human expressiveness like passive channels. They are, with their feedback, re-
sponsible for provoking and instigating the performer through their own interfaces’ (quoted in
Gurevich and Trevino 2007). Magnusson (2018) similarly argues that ‘instruments are actors:
they teach, adapt, explain, direct, suggest, entice. Instruments are impregnated with knowledge
expressed as music theory ... they explain the world.’ For example, ‘the piano keyboard “tells
us” that microtonality is of little importance (and much Western music theory has wholly sub-
scribed to that script); the drum-sequencer that 4/4 rhythms and semiquavers are more natural
than other types; and the digital audio workstation, through its affordances of copying, pasting
and looping, assures us that it is perfectly normal to repeat the same short performance over
and over in the same track’ (Magnusson 2009).

In music as in other areas of technology, an object must typically be understood in the context of
the broader social and cultural ecosystem in which it operates (Green 2011). For example, the
guitar is not merely a physical object with six strings and a fretted fingerboard; it is the locus of a
rich and complex interplay of cultural associations and embodied practices (Harrison, Jack, Mor-
reale and McPherson 2018). In developing new instruments, the problem confronting both the
luthier and the organologist is how to account for the role of existing cultural associations in a
new technology (Bijsterveld and Peters 2010, Horn 2013, Magnusson 2018). Bates (2012) sug-
gests that even the personal identity of the performer might be changed through association
with an instrument.

The encoding of epistemic knowledge within technologies is not unique to musical instruments;
it has also been observed about instruments of science (Baird 2004, Tresch and Dolan 2013).
Akrich (1992) explains that 'sociologists of technology have argued that when technologists de-
fine the characteristics of their objects, they necessarily make hypotheses about the entities that
make up the world into which the object is to be inserted.... A large part of the work of innovators
is that of 'inscribing' this vision of (or prediction about) the world in the technical content of the
new object.'

The influence of music programming languages on creative practice is not necessarily ex-
pressed in terms of formal limitations on what is possible to create, in that a Turing-complete
programming language is theoretically capable of anything. Rather, languages will differ in what
ideas and structures are the most expeditious or obvious to code (Nash 2015). Analogies have
been drawn between programming and craft practice (Lindell 2014, Blackwell 2018), in which
code functions as a material, and programming is akin to the reflective dialog between practi-

tioner and material that has been theorised for other craft disciplines (Ingold 2009, Karana,
Barati, Rognoli, Der Laan and Zeeuw 2015).

It is interesting to question through what mechanisms does a script which is embedded idiomat-
ically within a musical technology shape human action. A human-computer interaction perspec-
tive might focus on affordances, whether apparent or hidden (Gaver 1991), though exploration
of constraints may be equally salient (Magnusson 2010). In the context of embodied interaction,
Tuuri et al. (2017) propose the notion of experiential control, looking beyond 'control spaces
merely as instrumental spaces delineated by sensors, physical performance and the related in-
put information' toward the 'subjective and intentional viewpoint of the musician playing the in-
strument'. In this view, instruments can push the performer away from actions that are difficult or
have no apparent function, while pulling them toward actions which are convenient or natural.
Jack, Stockman and McPherson (2017) observe the rapid emergence of these push and pull
effects when percussionists encounter an unfamiliar instrument, with initial techniques derived
from hand drumming giving way within minutes to techniques narrowly directed to the sensing
modality of the instrument.

The influence of technology on action is by no means limited to embodied interaction. In the
context of digital musical instrument design, Newton and Marshall (2011) created a toolkit with
the expectation that designers would start with ideas of gesture and sound, but instead found
that designers took a technology-focused approach: 'They started by examining the sensors
that were available to them, the parameters these sensors could detect and where on the in-
strument they could be easily mounted. Only then would they think about the gestures that the
sensors could be used for.' In Andersen's 'magic machines' creative ideation workshops with
musicians, materials with acoustic properties (e.g. elastic bands) are deliberately excluded to
avoid easy or obvious associations (Andersen and Wakkary 2019). Building on this workshop
methodology, Lepri and McPherson (2019) found that designing fictional instruments with non-
functional materials brought the aesthetic priorities of the individual designer into sharper focus,
though even non-functional materials cannot be a neutral medium for ideation.

2.2 Instruments and pieces

In the community of digital instrument creators whose locus is the NIME (New Interfaces for
Musical Expression) conference, a continuing debate exists on the applicability of traditional
separable musical roles to musical practices with NIMEs (e.g. composer, performer, instrument
builder) (Dobrian and Koppelman 2006, Gurevich and Treviño 2007). Gurevich (2018) endorses
the view of Johnston (2016) that roles in NIME are ‘contingent and dynamic’, such that instru-
ments might change identities, composers might produce interactive systems rather than notat-
ed scores, and performers might prioritise exploration and discovery over virtuosity. Goddard
and Tahiroğlu (2013) suggest particular awareness and understanding of the evolving nature of
the performer-instrument-composer relationship within specific contexts and cultures of new in-
struments which could help us to inform how these relationships may be facilitated in various
ways during the design process of new instruments. A survey by Morreale et al. (2018) found
that ‘composed instruments’, which are inseparable from a particular piece, were common
amongst NIME designers.

The question is where the boundary of composed instruments can be found. Many live coding
practitioners have developed their own languages or language variants; are these languages
composed instruments? One respondent to the survey by Magnusson and Hurtado (2007) says
of using the ixilang live coding language, ‘Like, the pieces wouldn't be by me, they'd be by you.’
Are more generalist music programming languages like SuperCollider or Pd also, to some limit-
ed extent, composed instruments? Could we say that any instrument, including traditional
acoustic instruments, might be ‘composed’ in the sense that its identity is inherently bound up
with the pieces at the time of its creation? Green (2011) questions ‘whether the propensity of
digital systems to “script” action really is a special property of a given device or class of device
when we consider the instrument as an assemblage of material and immaterial resources rather
than as a single artefact.’

The purpose of asking these questions is not to suggest that every piece written with SuperCol-
lider (or with a violin) is a variant of some hypothetical meta-composition, but rather to highlight
that no instrument, whether acoustic or digital, emerges from a cultural vacuum. Instruments
and music languages are influenced both by general theories of music and by particular pieces
that were important to the designer and the time of their creation. We might reasonably expect
these influences to be reflected in what is idiomatic to produce on the instrument. In turn, we
have seen that the idiomatic strongly shapes the patterns of thought and action by subsequent
musicians who use the instrument.

3. Values of Computer Music Languages

The design of any new technology is situated in a social and material context, and the design
will respond to values and ideas embedded in the tools (Suchman 1987). Designers of new digi-
tal instruments will likely be influenced not only by their own pre-existing aesthetic values (Lepri
and McPherson 2019) but by the assumptions and conveniences of the software and hardware
they use to create their instruments. Each computer music language will come with its own dis-
tinctive outlook. For example, interpretations or transformations of sonic features which occur in
real-time audio synthesis plug-ins might differ considerably from those of dataflow programming
languages or from those of pattern-based object-oriented languages (Lyon 2002). These differ-
ences in audio processing amongst languages may have more to do with differing basic para-
digms for manipulating data rather than different aesthetic priorities amongst language creators.

The design process of a music programming language constitutes both method and approach in
providing a domain, ‘an abstract model of computation’ (McCartney 2002). In fact, this is the
primary distinguishing feature that allows these environments to be programmable, not resulting
in ever greater complexity in problem solving, but rather allowing us to think about an intuitive
way to work on problem domains, ‘without worrying about details that are not relevant to the
problem domain of the program’ (Zicarelli 2019). The challenge of the low-level music language
is to ‘provide a set of abstractions that makes expressing compositional and signal processing
ideas as easy and direct as possible. The kinds of ideas one wishes to express, however, can
be quite different and lead to very different tools’ (McCartney 2002). If in practice, digital musical
instrument designers are influenced by core operating assumptions of the languages they use,
then there is value in highlighting some of these assumptions and how they differ amongst pop-
ularly-used tools.

To gain insight into the assumptions behind popular languages, we circulated a short question-
naire to creators and developers of five widely-used languages: Max/MSP (Zicarelli 2019, Clay-
ton 2019), Pure Data (Puckette 2019, Grill 2019), SuperCollider (Baalman 2019), Csound (Laz-
zarini 2019) and ChucK (Wang 2019). The questions concerned the basic paradigm of manipu-
lating data and parameters in the language, the perceived differences to other languages, and
the ways that the language influences music or instruments created within it. Below we describe
some emergent themes of these conversations:

Open-endedness: one theme that emerges across interviews, and in the publications about the
languages, is the desire for the languages to be sufficiently open-ended to let the practitioner
express their own sonic ideas without bias. Puckette (2002) writes of the Max family of lan-
guages (Max/MSP, Pd, jmax) that the design ‘goes to great lengths to avoid a stylistic bias on
the musician's output.’ In response to our questionnaire about Pd, Puckette highlights ‘Pd's low-
level primitives (phasor, but no band-limited sawtooth generator, for instance) - which is intend-
ed to encourage users to develop their own 'sound' rather than guide them’ (Puckette 2019).
Thomas Grill (2019) concurs: ‘I guess there is no such “canonical” organization on a perceptual
sonic level at all.’ Joshua Kit Clayton (2019) writes of Max/MSP: ‘Specific sonic features are pri-
oritized less within the environment than the ability to access information at any level, prototype
quickly and interactively, and to build relationships between different types of data streams.’

Marije Baalman (2019) similarly writes of SuperCollider: ‘The environment by itself does not pri-
oritise particular sonic features, rather the user creates her own sonic units from the smaller
building blocks.’ By contrast, Zicarelli (2019) sees Max/MSP as accepting limitations in service
of learnability: ‘we want to look at a problem space and imagine how someone could design
within some subset of the space in such a way that there are only a few basic gestures that you
need to learn; then you can combine the basic gestures in mostly arbitrary ways to make what
you want. With this approach, we are not trying to cover 100% of what you can do in the do-
main.’ For ChucK, the language's strong focus on explicit timing may lead to an aesthetic focus
on ‘a more immediate, deterministic mindset for specifying computer music programs’ (Wang,
Cook and Salazar 2015).

Abstraction: The language creators also focus on abstraction and encapsulation as values of
their languages. Victor Lazzarini (2019) writes that Csound ‘is mostly “object-based” rather than
class-based, as all the user sees are objects that implement a given unit-generator behaviour’
but also notes that the fact that its variables hold signals allows the direct specification of signal-
processing operations. Baalman (2019) highlights the progression in SuperCollider from low-
level unit generators through to SynthDefs (‘blueprints for synthesis units’) to instantiated synth
instances within its audio engine. She sees the most important features as ‘the combination of
flexibility (the possibility to livecode, change code on-the-fly) and the capacity to make abstrac-
tions (in SynthDefs, but also classes) to create building blocks of your own.’ According to Zi-
carelli (2002), an original design principle of Max was to implement only a few primitive objects
while allowing the creation of abstractions from combinations of them: ‘with encapsulation, users
need not be concerned with whether an element was one of the basic ones Miller provided or
one they made themselves.’ Clayton (2019) emphasises that Max objects can be programmed
in a variety of different languages.

Rapid prototyping: Iteration time is a concern of several language developers. Wang (2019)
writes that ‘ChucK is meant to support rapid experimentation through a kind of “on-the-fly pro-
gramming” or “live coding”’. Live coding is also a key concern of SuperCollider, which supports
on-demand evaluation of blocks of code. Over the past decade, SuperCollider has been used to
host other live coding languages such as ixilang (Magnusson 2011), and its synthesis engine
(which is separate from its language) has become a popular back-end for live coding languages
such as TidalCycles (McLean 2014), whose syntax is based on Haskell, Overtone and Sonic Pi
(Aaron and Blackwell 2013), both based on the Clojure Lisp dialect. SuperCollider's rapid itera-
tion means ‘the experimentation and exploration of a new concept can happen in the same time’
(Baalman 2019). Baalman sees the text-based nature as supporting rapid experimentation: ‘I
can type faster than I can move the mouse.’ In Max, the ability to ‘prototype quickly and interac-
tively’ is a priority (Clayton 2019).

Dynamism (or lack thereof): A contrast emerges between the data flow languages (Max and
Pd) and the others with respect to dynamic instantiation of synthesis processes. Baalman high-
lights the importance of being able to dynamically define and create Synth units in SuperCollid-
er, and Lazzarini (2019) explains that Csound ‘uses the notion of an instrument as a class that
may be instantiated a number of times (any, in the case of Csound) for a set period (which in
Csound may be unlimited) starting at any given time from now into the future.’ On the other
hand, Zicarelli (2019) draws an analogy between Max and modular synthesis, and writes: ‘The
thing that Max can’t do easily is manage N of something, where N is dynamic.... If I cared about
this kind of dynamic instantiation I would probably use SuperCollider. But a lot of music is cov-
ered by static systems.’ Puckette (2019) similarly observes: ‘The fact that signal connections are
static makes it easier to make instrument-like patches and less convenient to make things that
spawn variable numbers of voices.’

Aesthetic influence: In his 2002 paper on Max, Puckette writes: ‘The design of Max goes to
great lengths to avoid imposing a stylistic bias on the musician's output', pointing to the blank
page that greets the new user (something that Zicarelli (2002) also highlights). Still, Puckette
(2002) concedes: ‘Perhaps we will eventually conclude that no matter how hard one tries to
make a software program culturally neutral, one will always be able to find ever more glaringly
obvious built-in assumptions. But this is not a reason to stop designing new software; on the
contrary, it gives hope that there may be many exciting discoveries still to be made as more and
more fundamental assumptions are questioned and somehow peeled away.’ The preceding
themes already highlight divergent priorities for different languages: explicit specification of time
in ChucK, scheduling and simultaneous access to high-level objects and low-level DSP in
Csound, dynamism and flexibility of syntax in SuperCollider, an instrument-like paradigm and
flexible data connections in Pd and Max. Puckette is likely correct that any software program
cannot be culturally neutral, and this certainly aligns with other authors' observations (Haworth
2015, Nash 2015). In the next section we will examine how the influence of these languages
might be expressed in the creation of digital musical instruments and compositions.

4. Survey of Instrument Creators
To complement the perspective of the language developers, we conducted an online survey of
digital musical instrument creators to seek insight into how their choice of language might influ-

ence their aesthetic choices. We expected from the beginning that this would be a difficult ques-
tion to ask directly: designers might not acknowledge (or even be aware of) the possibly subtle
ways that languages shape their instruments, and the survey should not be seen as diminishing
their creative agency. We therefore sought to gather information on the languages used, instru-
ments created, and pieces and performances with that instrument, to identify any notable asso-
ciations.

The survey was approved by the ethics board at Aalto University and run with the university's
Webropol service. It was circulated to mailing lists for digital musical instrument communities
(NIME, SMC) and user groups for music programming languages (Pd, SuperCollider, Csound).
The survey was anonymous in that no names or demographic data was collected, though re-
spondents were invited to share names of their instruments and pieces. The survey contained
27 questions (8 multiple choice, 19 free text) spanning 3 themes: digital musical instrument,
composition, performance; participants were invited to name one instrument and a piece and
performance associated with it.

The completion rate of surveys started was 39%; in total 36 complete responses were
received. To create their instrument, participants reported using a variety of languages: Pd (7 1

respondents), SuperCollider (7), Csound (5), C/C++ (5), Max/MSP (3), others (5) and multiple
languages within the same instrument (5). We asked the respondents to describe the sonic or
musical language of their instrument. After a clustering into categories we found the following
appearing more than once: ambient/drone/noise (5), algorithmic (3), gestural/mapping (2), live
coding (2), physical modelling (2). Of course, we acknowledge that genre is a problematic con-
cept (Haworth 2016) and that a diversity of micro-genres exists within the umbrella of electroa-
coustic music. 3 of 5 algorithmic or live coding instruments were made with SuperCollider (an-
other used Forth, the last used Tidal Cycles). Both physical modelling instruments were imple-
mented in C/C++. Otherwise, no clear associations were evident: of the 5 ambient/drone/noise
instruments, 5 different languages were used (C/C++, SuperCollider, Max, Pd, Csound).

A thematic analysis was performed on the responses about the relationships amongst language,
instrument, piece and performance (Braun and Clarke 2006). We identified the following
themes: one instrument for one piece, limitless possibilities of the languages, flexibility for trans-
formation, interactivity, generative and random features in instruments, complexity of the pro-
cessed involved in compositions, first the piece then the language, more people in low-level
languages, appropriate software, unexpected uncertainty and responsive instruments. Combin-
ing these themes in groups resulted in three high-level themes: Constraints and Opportunities,
Instrument as the Piece and Under the Influence of Language.

Constraints and Opportunities

This theme is associated with how the choice of programming language or audio software envi-
ronment influenced the design of their digital musical instrument. It is directly linked to the re-
sponses regarding the design and problem space of the programming language. Several re-
sponses mentioned limitless possibilities of their language:

 Survey responses available at https://sopi.aalto.fi/dmiip/idiomaticity/survey/data20191

‘There is no user interface, it starts with a tabula rasa’ (#33, using Tidal Cycles/Haskell)

‘MaxMSP in particular allows easy creation of visual feedback systems for the instrument. I sus-
pect I'd not have bothered with visual feedback if I started out using SuperCollider instead.
While set of built-in objects and add-on libraries are seen as opportunity were key to making
it’ (#30)

‘Pd doesn't really have a particularly preformed sense of what's possible within it’ (#15)

‘Csound has great flexibility to allow the realisation of the conceptual idea without
limitations.’ (#25)

Constraints and Opportunities might be considered as the results of sequences of experimenta-
tion with the programming language. Whether the participants speak of opportunities from rapid
prototyping capabilities, or constraints from conceptual ideas they applied to the design of the
instruments, we see sources of influence which guide the development of the instrument.

Under the Influence of Language

While identifying a simple causal relationship between programming language and instrument
aesthetics is a challenge, the Under the Influence of Language theme looks at more general
effects on practitioner’s design work:

‘It [the choice of programming language] does influence for sure. Each environment has its own
limitations, particularities and affordances somehow’ (#28, Python/Pyo)

‘Almost entirely predicated upon the SuperCollider language. Would be highly unlikely to build a
similar instrument in a different environment.’ (#31)

‘My software made it possible to build this instrument in a certain way. There will be ways to
build it with other software, but it would be 'different'. The tool is the path.’ (#32, SuperCollider).

‘Oh it [the language] didn't [influence the piece] we just needed something for real time mathe-
matical modelling.’ (#11, Pd)

‘It's the other way around. The instrument influenced the choice of programming language and
audio environment’ (#16, SuperCollider/OpenFrameworks)

We might draw an analogy between the role of the language and Ihde's background relation
where technology shapes people and their surroundings without calling attention to itself (Ihde
1990). The influences on instrument design may be obvious (where an instrument depends on
specific affordances of a language) or they may be subtle and latent. The influence of the lan-
guage on the composition is subtler still. Responses to this question had several variations of
answer: the composition was influenced by the language, the composition was influenced by the
instrument and therefore only directly by the language, or the language/instrument was chosen/
developed to suit the piece:

‘The instrument came from Csound and the piece is almost entirely this instrument so the clos-
est answer in “totally”’ (#19)

‘The composition was heavily influenced by the specific features of the instrument. As most of
the features of the instrument are connected with the employed languages and environments, I
guess there is a certain connection between the composition and the technology.’ (#5, C++)

‘This question should be reversed. My desire to compose algorithmically led me to identify ap-
propriate software with which to do so.’ (#20, Csound)

Instrument as the Piece

We asked whether the instrument had been involved in the writing of the piece. 83% of the re-
spondents who answered this question said it had. When asked whether the piece could be
played on any other instrument, a plurality (41%) of responses said it could not; 34% said it
could, and 25% gave an intermediate answer (e.g. the piece could be played but it would sound
different, or that it might be possible but they hadn't tried). In these numbers and in the text re-
sponses, we see a common theme that the instrument and the piece are either one and the
same, or at least inextricably linked. This trend has been noted before in the NIME community
(Morreale et al. 2018).

‘It follows no strict time domain notation however. Every possibility of oscillographic sound/im-
age correspondence in comes from the digital instrument. The work is impossible without
it.’ (#3, Pd)

‘I think the piece reflects the composer's first impression of the instrument.’ (#5, C++)

‘The distinction between instrument and piece does not apply here. The piece is a computer
program that renders the sound’ (#21, Csound)

‘It is quite central as all the music is tailored around the instrument. Digital lutherie is the
work.’ (#24, SuperCollider/Arduino)

What emerges is not a straightforward chain of influence from language to instrument to piece,
but rather a complex interplay where aesthetic goals will shape the choice of language, the lan-
guage will in turn have an effect on the instrument, and the piece remains tightly intertwined with
the affordances and constraints of the instrument. If these responses do not prove specific types
of aesthetic influence from specific languages, at least they demonstrate that digital musical in-
strument creation is fertile territory for such influences to emerge. This balance is captured by
respondent #20, who used 7 different languages in their instrument: ‘While I am sure the pro-
gramming languages/environments still affected our work, we did a lot of thinking about the
conceptualisation and representation of the instrument in more abstract terms (gesture, form,
sound).’

5. Discussion

The proposition that technology is a non-neutral mediator of human cognition has deep roots in
philosophy (Ihde 1990, Verbeek 2015), and a practical mechanism for this influence can be
seen by the extent to which musical instrument creation is not an abstract goal-directed exercise
but rather one that explores and responds to the opportunities and constraints of the tools
(Magnusson 2010, Newton and Marshall 2011, Lepri and McPherson 2019).

Following Vallgårda and Fernaeus (2015), we might consider certain approaches to digital mu-
sical instrument design to be a bricolage practice, where 'the bricoleur does not plan ahead but
develops the project in-situ with concerns of interaction, physical form, and behaviour pattern
not being hierarchically ordered a priori.' Specifically, we suggest that these in-situ explorations
are channelled by what is idiomatic to the underlying tools, for two reasons. First, as with impro-
visation, decisions are often made in the moment in response to immediate opportunities and
constraints of the environment (Magnusson 2010). This may be one reason that many music
programming languages prioritise rapid iteration time; 'experimentation and exploration of a new
concept can happen in the same time' (Baalman 2019). Second, languages impose certain
epistemic perspectives (Lindell 2014) which can elevate the perceived importance of certain de-
sign decisions while obscuring others.

Explicit and implicit qualities

The correspondence with language developers reported earlier in this article shows certain con-
trasts in what each language makes explicit. For example, time is explicitly represented in cer-
tain languages, including ChucK (described by Ge Wang as a 'first-class feature of the lan-
guage' which supports a '’hyper-imperative” mindset') and Csound (whose score functionality
allows the timing and duration of events to be explicitly controlled). The specification of time in
Csound follows a scheduler model, where the timing of score events might be specified in sec-
onds or in musical time with adjustable tempo; within synthesis processes (instruments), time is
mostly implicit, with individual opcodes maintaining a distinction between audio and control
sample rates. In ChucK, the time of every computation is specified to sample-level precision
through the use of the now keyword. On the other end of the spectrum, time is implicit in data
flow languages such as Max and Pd, whose mostly static signal graphs abstract away the un-
derlying changes in data that flow through them. On the other hand, data relationships and
mappings are easily represented in Max and Pd whose paradigm is partly inspired by modular
synthesis (Zicarelli 2019), and in SuperCollider by the connections between unit generators, but
perhaps less so within more imperative languages.

We propose that the explicit and the idiomatic are linked in music programming languages. In
general, it will be more convenient to manipulate explicitly represented qualities in a language or
parameter space than to create a desired effect by shaping implicit elements. The result will be
design processes that prioritise the explicitly represented aspects of the tool.

By way of example, consider the creation of a MIDI controller using sensors and a data flow
programming language. The fundamental unit of MIDI is the message, especially the note on
and note off message. The former is characterised by two explicit parameters: a note number
(organised in discrete semitones) and a velocity. Other musical elements such as rhythm or
harmony are implicit, emerging only through interrelationships of multiple messages. As a result,
a common approach especially amongst student creators is to build keyboard-like interactions

based on triggers for discrete messages and data mappings from numerical sensor values to
either note number or velocity. Where rhythm is considered, for example in a step sequencer
environment, it is often based on a regular clock which is easily created from a timer object like
metro in Pd or Max.

Built-ins and presets

The aforementioned step sequencer example also highlights the influence not only of the lan-
guage structure, but of the particular objects and presets that are built into it. Zicarelli (2002)
describes Max as 'more of an ecosystem than a language', pointing to Miller Puckette's original
vision in the late 1980's of a minimal set of core objects which would support a diversity of
community-contributed higher-level encapsulations. Today, hundreds of such objects (whether
implemented directly in C or as abstractions of other objects) are included in the software.

In our survey, we see several responses highlighting reliance on particular built-in objects (Max/
Pd), opcodes (Csound) or UGens (SuperCollider): one respondent (#19) explained the instru-
ment 'grew from experiment with Csound opcodes I did not know'; another (#10) wrote that 'Pd's
rich set of built-in objects and add-on libraries were key to making' the instrument. Here we
might draw an analogy to the importance of the built-in presets on digital hardware and software
synthesisers in defining how it is used in most performance situations: even where a full-fea-
tured parameter editor is available, it is likely that many musicians will choose amongst the pre-
sets.

Zicarelli's 2002 description of Max as an ecosystem is aimed at its openness to creating new
elements and relationships, a 'universal language of meaningless numbers' (Zicarelli 1991), but
the term 'ecosystem' could equally describe the role of Max as the locus of a developer and
user community which shares patches, ideas, musical works and technical support. In the cur-
rent era, a beginning instrument creator working with Max is less likely to engage in isolation
with the generic affordances of the data flow environment, but rather will borrow from, adapt and
recombine example patches, seek guidance from online tutorials and forums, and share ideas
with other developers. These influences cannot be directly attributed to the structure of the lan-
guage itself but they are crucial to understanding the ideas that emerge. A corollary to this ob-
servation is that apparently similar languages like Max and Pd may nonetheless have different
aesthetic predilections depending on the built-in objects and the priorities of their active com-
munity members.

Limitations

Our survey of instrument designers finds acknowledgment of the influence of tools, but we also
find a significant minority of respondents rejecting the premise that the instrument design follows
the language (in many cases suggesting that the reverse was true: a language was chosen
based on the needs of an instrument or piece). In general, it can be difficult to establish any de-
finitive conclusion in that the influence of the language may be latent and subconscious. De-
signers following 'scripts [which] are often well hidden and concealed' (Magnusson 2009) may
not be fully aware of them, but on the other hand, a lack of self-reported influence should not be
taken as evidence that a well-concealed script exists. A considerably larger sample size, or a
comprehensive review of published instruments and performances, might yield a richer perspec-

tive by supporting statistical associations between the use of particular languages and aesthetic
choices, independent of any self-reported influences.

We should also consider the possibilities that designers gravitate to particular languages be-
cause they support their musical outlooks, or that for some practitioners the community rather
than the language is the primary source of aesthetic influence. These positions are not neces-
sarily opposed to the idea that the language influences the instrument: by way of choosing a
language, a designer might choose which scripts they want to be guided by while knowing that
the influence of the script might manifest in unforeseen ways later in the design process.

In our correspondence with language developers, a common theme was the ability to create any
sonic outcome starting from fundamental building blocks. However, this capability does not con-
tradict the notion that each language might make certain ideas easier or more convenient than
others (Nash 2015). If every language was equally capable of making any instrument, and every
language promoted the same thought processes, one could justifiably ask why so many lan-
guages are needed and why so many of them continue to support vibrant user communities.

6. Conclusion
The intention of this article has been to draw together insights from several fields to seek the
latent influence of music programming languages on digital musical instrument design, and indi-
rectly on composition and performance. We support this investigation through correspondence
with language creators and a community survey of instrument designers. Our purpose in this
endeavour is not to create a material-deterministic view of the world where the creativity of the
designer is trivialised as following a script written by the language developer, but rather to eluci-
date the subtle influences of tools which are often promoted for their ostensible open-ended-
ness for any musical application.

We suggest that idiomaticity is a useful lens through which to view the influence of both instru-
ments and languages. In every language, certain ideas and design patterns will be easier or
more convenient than others, perhaps relating to what a language makes explicit versus what it
leaves implicit. In the same way that idiomatic patterns of a traditional instrument affect improvi-
sation and composition, what is idiomatic in a music language affects the in-situ exploration that
characterises much of digital musical instrument design. Similar influences likely exist in elec-
troacoustic composition, where the language or other software tool makes certain musical pat-
terns more obvious or easy to execute than others.

We also suggest that the encoding of epistemic knowledge about music is not something unique
to fully-realised musical instruments or high-level music production software, but is also present
in low-level languages regardless of whether they are theoretically capable of implementing
anything. In this way, we endorse Magnusson's (2009) notion of the instrument as epistemic tool
but propose that this designation can extend to any language for creating musical structures or
interactions. The main difference with low-level languages is not the presence or absence of
hidden scripts, but the extent to which they are concealed from the designer on first encounter.

While our findings are not intended as proof of particular aesthetic influences and the creativity
of the individual practitioner always remains primary, we propose that digital musical instrument
design could be seen as a dialogue across time and distance between the language creator and
the instrument designer who ultimately summons the resources (and with them, the hidden
script) of that language to suit their creative goals. In this way, language design becomes a kind
of meta-creative act that can ultimately have aesthetic ramifications that carry on for decades.
7. Acknowledgement

Thank you to Marije Baalman, Joshua Kit Clayton, Thomas Grill, Victor Lazzarini, Miller Puck-
ette, Ge Wang and David Zicarelli for sharing their thoughts on the languages they develop.
This work was supported by the Academy of Finland (project 319946) and the UK Engineering
and Physical Sciences Research Council under grant EP/N005112/1.
8. References

Aaron, S. and Blackwell, A.F., 2013. From sonic Pi to overtone: creative musical experiences
with domain-specific and functional languages. In Proceedings of the first ACM SIGPLAN work-
shop on Functional art, music, modeling & design. ACM: 35-46.

Akrich, M., 1992. The de-scription of technical objects. MIT Press.

Andersen, K. and Wakkary, R. 2019. The Magic Machine Workshops: Making Personal Design
Knowledge. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Sys-
tems. ACM: 112.

Baird, D. 2004. Thing knowledge: A philosophy of scientific instruments. Univ of California
Press.

Baalman, M. 2019. (personal communication - email, April 02, 2019).

Bates, E. 2012, The social life of musical instruments. Ethnomusicology 56(3): 363-395.

Bijsterveld, K. and Peters, P. 2010. Composing Claims on Musical Instrument Development: A
Science and Technology Studies’ Contribution. Interdisciplinary Science Reviews.35(2):106–21.

Bin, S.A., Bryan-Kinns, N. and McPherson, A.P. 2018. Risky business: Disfluency as a design
strategy. In Proceedings of the International Conference on New Interfaces for Musical Expres-
sion. Blacksburg, Virginia, USA.

Blackwell, A. 2018. A Craft Practice of Programming Language Research. In Proceedings of the
Psychology of Programming Interest Group (PPIG) Conference.

Braun, V. and Clarke, V. 2006. Using thematic analysis in psychology. Qualitative research in
psychology 3(2): 77-101.

Clayton, J. K. 2019. (personal communication - email, April 11, 2019).

De Souza, J. 2017. Music at hand: Instruments, bodies, and cognition. Oxford University Press.

Dobrian, C and Koppelman, D. 2006. The e in nime: musical expression with new computer in-
terfaces. In Proceedings of the international conference on new interfaces for musical expres-
sion. Paris, France:277–282.

Gaver, W.W. 1991. Technology affordances. In Proceedings of the SIGCHI conference on Hu-
man factors in computing systems. ACM: 79-84.

Goddard, C. and Tahiroğlu, K. 2013. Situating the Performer and the Instrument in a Rich Social
Context with PESI Extended System. In Proceedings of the Sound and Music Computing Con-
ference. Stockholm, Sweden: 368-375.

Goldman, A. 2019. Live coding helps to distinguish between embodied and propositional impro-
visation. Journal of New Music Research:1-13.

Green, O. 2011. Agility and Playfulness: Technology and skill in the performance ecosystem.
Organised Sound 16(2): 134-144.

Green, T.R.G. and Petre, M. 1996. Usability analysis of visual programming environments: a
‘cognitive dimensions’ framework. Journal of Visual Languages & Computing 7(2):.131-174.

Grill, T. 2019 (personal communication - email, March 04, 2019).

Gurevich, M. 2017. Discovering instruments in scores: a repertoire-driven approach to design-
ing new interfaces for musical expression. In Proceedings of the international conference on
new interfaces for musical expression. Copenhagen, Denmark: 163–168.

Gurevich, M., Marquez-Borbon, A., and Stapleton, P. 2012. Playing with constraints: stylistic
variation with a simple electronic instrument.Computer Music Journal 36, 23–41.

Gurevich, M. and Treviño, J. 2007. Expression and its discontents: toward an ecology of musical
creation. In Proceedings of the international conference on new interfaces for musical expres-
sion. New York City, NY, United States:106–111.

Harrison, J., Jack, R., Morreale, F. and McPherson, A. 2018, When is a Guitar not a Guitar? Cul-
tural Form, Input Modality and Expertise. In Proceedings of the international conference on new
interfaces for musical expression. Blacksburg, Virginia, USA.

Haworth, C. 2015. Sound synthesis procedures as texts: An ontological politics in electroa-
coustic and computer music. Computer Music Journal 39(1): 41-58.

Haworth, C., 2016. ‘All the Musics Which Computers Make Possible’: Questions of genre at the
Prix Ars Electronica. Organised Sound, 21(1): 15-29.
Horn, M.S. 2013. The role of cultural forms in tangible interaction design. In Proceedings of the
7th International Conference on Tangible, Embedded and Embodied Interaction. ACM: 117-124.

Huron, D. and Berec, J. 2009. Characterizing idiomatic organization in music: A theory and case
study of musical affordances. Empirical Musicology Review 4 (3): 103-122.

Ihde, D. 1990. Technology and the lifeworld: From garden to earth(No. 560). Indiana University
Press.

Ingold, T., 2009. The textility of making. Cambridge Journal of Economics, 34(1), pp.91-102.

Jack, R.H., Stockman, T. and McPherson, A. 2017. Rich gesture, reduced control: the influence
of constrained mappings on performance technique. In Proceedings of the 4th International
Conference on Movement Computing. ACM.

Johnston, A. 2016. Opportunities for Practice-Based Research in Musical Instrument Design.
Leonardo, 49(1): 82–83.

Jordà, S. 2005. Digital Lutherie: Crafting musical computers for new musics’ performance and
improvisation. Ph.D. Thesis, Universitat Pompeu Fabra.

Karana, E., Barati, B., Rognoli, V., Der Laan, V. and Zeeuw, A. 2015. Material driven design
(MDD): A method to design for material experiences. International Journal of Design, 9(2):
35-54.

Lazzarini, V. 2019 (personal communication - email, April 01, 2019).

Lazzarini, V., 2013. The development of computer music programming systems. Journal of New
Music Research. 42(1): 97-110.

Lazzarini, V., Yi, S., Heintz, J., Brandtsegg, Ø. and McCurdy, I. 2016. Csound: A Sound and Mu-
sic Computing System. Springer.

Lepri, G. and McPherson, A. 2019. Making Up Instruments: Design Fiction for Value Discovery
in Communities of Musical Practice. In Proceedings of the ACM Conference on Designing Inter-
active Systems (DIS), San Diego, USA.

Lindell, R., 2014. Crafting interaction: The epistemology of modern programming. Personal and
ubiquitous computing 18(3): 613-624.

Lyon, E. 2002. Dartmouth Symposium on the Future of Computer Music Software: A Panel Dis-
cussion. Computer Music Journal 26(4).

Magnusson, T. 2009. Of Epistemic Tools: Musical instruments as cognitive extensions. Organ-
ised Sound 14(2): 168–176.

Magnusson, T., 2010. Designing constraints: Composing and performing with digital musical
systems. Computer Music Journal 34(4): 62-73.

Magnusson, T., 2011. ixi lang: a SuperCollider parasite for live coding. In Proceedings of In-
ternational Computer Music Conference. Huddersfield, UK.

Magnusson, T. 2018. Ergomimesis: Towards a Language Describing Instrumental Transduc-
tions. In Proceedings of the International Conference on Live Interfaces, Porto, Portugal.

Magnusson, T. and Hurtado Mendieta E., 2007. The acoustic, the digital and the body: A survey
on musical instruments. In Proceedings of the 7th international conference on New interfaces
for musical expression. New York City, NY, United States.

McCartney, J. 2002. Rethinking the computer music language: SuperCollider. Computer Music
Journal 26(4): 61-68.

McLean, A. 2014. Making programming languages to dance to: live coding with tidal. In Pro-
ceedings of the 2nd ACM SIGPLAN international workshop on Functional art, music, modeling &
design. Gothenburg, Sweden.

McPherson, A., Morreale, F. and Harrison, J. 2019. Musical instruments for novices: comparing
NIME, HCI and Crowdfunding approaches. In New Directions in Music and Human-Computer
Interaction. Springer, Cham: 179-212.

Morreale, F., McPherson, A. and Wanderley, M. 2018. NIME Identity from the Performer’s Per-
spective. In Proceedings of the international conference on new interfaces for musical expres-
sion. Blacksburg, Virginia, USA.

Nash, C. 2015. The cognitive dimensions of music notations. In Proceedings of the International
Conference on Technologies for Notation and Representation (TENOR).

Newton, D. and Marshall, M.T. 2011. Examining how musicians create augmented musical in-
struments. In Proceedings of the international conference on new interfaces for musical expres-
sion, Oslo, Norway, 2011, p. 155–160.

Puckette, M. 2019 (personal communication - email, March 25, 2019).

Puckette, M.S. 1997. Pure Data. In Proceedings of the International Computer Music Confer-
ence. San Francisco, CA.

Puckette, M. 2002. Max at seventeen. Computer Music Journal 26(4): 31-43.

Suchman, L.A., 1987. Plans and situated actions: The problem of human-machine communica-
tion. Cambridge University Press.

Sudnow, D. 1978. Ways of the hand: The organization of improvised conduct. MIT Press.

Tahiroglu, K., Gurevich, M. and Knapp, R.B., 2018. Contextualising Idiomatic Gestures in Musi-
cal Interactions with NIMEs. In Proceedings of the international conference on new interfaces
for musical expression. Blacksburg, Virginia, USA.

Tahiroğlu, K., Vasquez J. and Kildal, J. 2017. Facilitating the musician's engagement with new
musical interfaces: Counteractions in music performance. Computer Music Journal 41(2): 69-82.

Théberge, P. 1997. Any sound you can imagine: Making music/consuming technology. Wes-
leyan University Press.

Tresch, J. and Dolan, E.I. 2013. Toward a new organology: instruments of music and science.
Osiris 28(1): 278-298.

Tuuri, K., Parviainen, J. and Pirhonen, A. 2017. Who controls who? Embodied control within
human–technology choreographies. Interacting with Computers 29(4): 494-511.

Vallgårda, A. and Fernaeus, Y. 2015. Interaction design as a bricolage practice. In Proceedings
of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction. ACM:
173-180.

Vasquez, J., Tahiroğlu, K. and Kildal, J. 2017. Idiomatic composition practices for new musical
instruments: context, background and current applications. In Proceedings of the international
conference on new interfaces for musical expression. Copenhagen, Denmark: 174–179.

Verbeek, P.P. 2005. What things do: Philosophical reflections on technology, agency, and de-
sign. Penn State Press.

Wang, G. 2019. (personal communication - email, February 28, 2019).

Wang, G., Cook, P.R. and Salazar, S. 2015. Chuck: A strongly timed computer music language.
Computer Music Journal 39(4): 10-29.

Zappi, V. and McPherson, A. 2018. Hackable Instruments: Supporting Appropriation and Modifi-
cation in Digital Musical Interaction. Frontiers in ICT 5: 26.

Zicarelli, D. 2019. (personal communication - email, March 30, 2019).

Zicarelli, D. 1991. Communicating with meaningless numbers. Computer Music Journal 15(4):
74-77.

Zicarelli, D. 2002. How I learned to love a program that does nothing. Computer Music Journal,
26(4): 44-51.

