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ABSTRACT

Deploying deep learning models on embedded devices is an
arduous task: oftentimes, there exist no platform-specific
instructions, and compilation times can be considerably
large due to the limited computational resources available
on-device. Moreover, many music-making applications de-
mand real-time inference. Embedded hardware platforms
for audio, such as Bela, offer an entry point for beginners
into physical audio computing; however, the need for cross-
compilation environments and low-level software develop-
ment tools for deploying embedded deep learning models
imposes high entry barriers on non-expert users.

We present a pipeline for deploying neural networks in
the Bela embedded hardware platform. In our pipeline,
we include a tool to record a multichannel dataset of sen-
sor signals. Additionally, we provide a dockerised cross-
compilation environment for faster compilation. With this
pipeline, we aim to provide a template for programmers and
makers to prototype and experiment with neural networks
for real-time embedded musical applications.
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1. INTRODUCTION

There are many instruments in the NIME community based
on embedded systems such as single-board computers (e.g.
Bela, Raspberry Pi) or microcontrollers (e.g. Teensy, Ar-
duino) [31, 1, 37, 21]. Plenty of these platforms provide
open-source APIs and IDEs that abstract, among others,
the complexities of compilation or interfacing with periph-
erals, which along with supportive online learning commu-
nities [15], well-documented code bases and tutorials, make
them a valuable teaching resource for music and audio pro-
gramming courses [18].

One of the most attractive features of these devices to
instrument designers is their self-containedness. Embedded
hardware-based instruments can work off-the-shelf and are
less susceptible to issues caused by system updates, which
may result in software and hardware compatibility prob-
lems when using general-purpose computers [25]. In gen-
eral, they require less maintenance than laptop-based in-
struments [1], which, in turn, is a desirable feature in terms
of the instrument’s longevity [24]. Their small size also al-
lows for integrating them into the instrument’s body.

Many of these platforms provide APIs that simplify their
usage. These APIs are typically written in C++, but many
have incorporated other audio programming languages. In
this context, Morreale et al. [25] introduce the notion of
“pluggable communities”, which refers to how disparate
communities establish a connection when users are empow-
ered to map their knowledge into a new domain. Inciden-
tally, there is a growing interest in deep learning techniques
in NIME [16, 32, 2, 26]. However, deploying neural models
into embedded platforms is an arduous task: oftentimes, no
platform-specific instructions exist, and the large building
times (due to the limited computational resources) compli-
cate debugging. Frequently, the APIs provided by these
platforms do not integrate deep learning inference engines,
and the programmer needs lower-level software development
skills to compile them. In addition, the deep learning mod-
els need to be very computationally efficient to run in real-
time. While there exist instances of porting deep learn-
ing frameworks into embedded systems in the context of
NIME [17, 8, 30], considerable effort is still needed to make
these accessible for non-expert makers.

This paper presents a pipeline to run neural networks



in real-time in the Bela' hardware platform [20], a plat-
form extensively used in NIME [37, 23, 25, 12]. Given the
stringent real-time requirements of musical instruments and
interfaces, we have chosen Bela due to its low input-output
latency [19]. As part of our pipeline, we include a tool to
record a multichannel dataset of sensor signals. Addition-
ally, we provide a dockerised cross-compilation environment
for faster compilation. With this pipeline, we aim to stream-
line the prototyping and experimentation with simple deep
learning models for real-time embedded audio applications,
and to contribute towards bridging the deep learning for
audio and the embedded hardware communities in NIME.

2. BACKGROUND

The practice of running neural networks in embedded de-
vices is referred to by different names across various do-
mains, such as edge AI in networked devices and cloud
applications, AloT in the context of artificial intelligence
integrated into everyday devices, and tinyML for devices
that operate on a few milliwatts of power.

In this paper, we continue with the terminology adopted
on the NIME 2022 workshop Embedded AI for NIME: Chal-
lenges and Opportunities [26] and use the term “embedded
AI” with some nuances: first, we focus on embedded plat-
forms that have low-power and low-resourced CPUs, but
that allow for real-time sensor or audio signal processing;
and secondly, we concentrate on deep learning? rather than
other techniques that fall under the umbrella of artificial
intelligence.

2.1 Embedded Inference

Inferencing with deep learning models for real-time audio
is a computationally demanding task, even for conventional
computers. For instance, to generate audio at 44.1kHz, the
model should be able to generate at least 44100 samples
every second. Since they are typically based on matrix op-
erations, neural networks are usually trained and run in
Graphics Processing Units (GPUs). There exist embedded
computers with integrated GPUs®. However, the communi-
cation overhead of interfacing between CPU and GPU can
be challenging for real-time audio applications, as well as
the balance between meeting the sampling rate and stay-
ing within limits for latency and jitter [28]. Recent ad-
vancements have been made in this direction in the context
of real-time audio effects [29]. Non-GPU alternatives for
deep learning exist: Kiefer [14] explores the usage of field-
programmable gate arrays (FPGAs), which can run large
parallel processes at very high frequencies, though they are
complex to manipulate when compared to commercial em-
bedded computers such as Bela or Raspberry Pi [14].

A perhaps more straightforward alternative is to directly
run the networks on the CPU. Mittal et al. [22] survey
the field of deep learning in CPUs, and find that CPUs
can outperform GPUs for large models and batch sizes due

"https://bela.io/

2Performing deep learning inference in a resource-
constrained device might seem counter intuitive: the “deep”
in “deep learning” implies that the model has a consider-
able number of layers and parameters, and consequently,
that it will need significant computational resources to run.
A more accurate term would be “shallow” learning, how-
ever, we use the term deep learning due to its extended
adoption.

3Such as the Nvidia Jetson Nano (https://developer.
nvidia.com/embedded/jetson-modules) or the Coral
Dev Board Mini (https://coral.ai/products/
dev-board-mini/).

to their greater available memory [36]. The memory ad-
vantage is also beneficial for networks where the number
of computations rises with sequence lengths but parallelisa-
tion is complex due to sequential dependency (e.g. RNNs)
[38]. Furthermore, in embedded systems, the CPU can be a
better suited choice for inference than the GPU since con-
tinuous inference in the GPU can lead to a high energy
consumption [38]. There exist hardware accelerators that
can be attached to embedded computers to speed up train-
ing and inference*, however, the software must be able to
leverage these optimisations [13].

An alternative approach to hardware optimisation is to
reduce the network size through compression techniques
such as pruning, quantisation or knowledge distillation,
among other strategies. Pruning techniques reduce the
model’s size by discarding a substantial amount of weights
in a neural network without significantly decreasing its ac-
curacy. Alternatively, quantisation strategies quantise the
weights and activations of a network to a lower-precision
datatype. Lastly, in knowledge distillation approaches, a
small student model mimics a larger teacher model. In the
case of pruning, the ratio of pruned parameters to the num-
ber of parameters originally present in the network (spar-
sity) can be used as a proxy to estimate the performance
of a network in a target platform. However, calculating
the exact time a model will need to run, which is rele-
vant when prototyping for real-time applications, is complex
since many other factors influence the efficiency of a model,
such as the enabled hardware optimisations, memory man-
agement and latency inherent to certain data operations
(e.g. FFTs).

Finally, hard real-time systems are usually programmed
with compiled languages such as C or C++, which favour
deterministic code. Some deep learning frameworks pro-
vide C+4+ distributions (e.g. Libtorch® for PyTorch and
TFLite® for TensorFlow), however, they tend to rely on
resizable data structures that can allocate memory dynam-
ically (e.g. C++’s std::vector.resize()), which makes
them potentially inappropriate for real-time implementa-
tions [7]. Stefani et al. [30] run a comparison of audio
classification performance of the TFlite, Libtorch, ONNX
Runtime” and RTNeural [7] inference engines. The authors
find that these frameworks can be used safely for hard real-
time applications. Alternatively, the IREE (Intermediate
Representation Execution Environment) is a compiler and
runtime stack based on the MLIR (Multi-Level Intermedi-
ate Representation) compiler infrastructure [34], which con-
verts the models into an intermediate representation that
allows optimising the model for the target platform hard-
ware. A recent Google Summer of Code project [27] de-
veloped support for compiling, running and benchmarking
IREE projects on Bela.

2.2 Existing Tools

Whilst these technical contributions represent significant
steps toward embedding deep learning models for musical
applications, there is still a need for tools that stream-
line these achievements to facilitate experimentation and
prototyping. In their Cognitive Dimensions of Notations
Framework, Blackwell and Green [4] include the “viscos-

4Such as Google Coral (https://coral.ai/products/
accelerator) or the Intel Neural Compute Stick
(https://www.intel.com/content/www/us/en/
developer/articles/tool/neural-compute-stick.html)
Shttps://pytorch.org/docs/stable/jit.html
Shttps://www.tensorflow.org/lite
"https://onnxruntime.ai/
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ity” dimension, which refers to the resistance of a system
to change. In this sense, the process of compiling infer-
ence engines and prototyping with deep learning models
for embedded platforms is viscous, since it often takes a
considerable amount of attempts and it involves a variety
of programming languages, frameworks and devices. Al-
though Blackwell and Green use the term viscosity to refer
to the number of actions needed to accomplish a goal, here
we might extend it to the time it takes for a system to
change. A pipeline for compiling and running deep learning
models on Bela reduces the viscosity of the task by pro-
viding a streamlined set of steps and templates, including a
cross-compilation environment that reduces the compilation
times.

The pipeline is intended for non-expert programmers with
sufficient skills to follow a tutorial involving interacting with
the target platform trough the CLI and coding in C++ and
python. It aims to encourage prototyping and experimen-
tation through code rather than interfaces. There exist a
few laptop- and interface-based tools (typically in Pd and
Max/MSP, or as VST plugins) that allow applying deep
learning and machine learning models in real-time to input
audio or sensor signals, such as FluCoMa [33], the nn_ tilde®
and torchplugins? Max/MSP and Pd externals, or the Neu-
tone VST plugin'; yet to the authors’ knowledge, none
specifically offers an embedded implementation. However,
there are a couple of examples of audio-based embedded
models: the real-time neural audio synthesis model RAVE
[6], that has been embedded'’ into a Raspberry Pi and
an Nvidia Jetson Nano, and the Neurorack [8], a Eurorack
module running a neural source-filter model, also embedded
on the Nvidia Jetson Nano.

Meanwhile, music-making deep learning models involv-
ing the performer’s body and gesture have received much
less attention, although the 2022 workshop Embodied Per-
spectives on Musical AI held at the University of Oslo in
Norway [9] manifested its increasing relevance. There exist
many laptop- and interface-based machine learning toolk-
its for gesture classification and mapping, such as GIMLeT
(Max/MSP) [35], ml.lib (Max/MSP, Pd) [5], XMM (C++,
python and Max/MSP) [11] or MnM (Max/MSP) [3], how-
ever, there are only a few embedded approaches related to
deep learning and gesture in the context of NIME, such as
Martin et al’s work [17], where a recurrent neural network
runs in a Raspberry Pi to predict the performer’s control
gestures. Whilst some of these projects provide very de-
tailed instructions for deploying the embedded models, we
aim to provide a more general and model-agnostic pipeline
for practitioners to apply to their own projects.

3. PIPELINE

We present a pipeline to record a dataset of signals, export
a light model trained on those signals, and run the model
in real-time on Bela. An overview of the pipeline is given
in Figure 1. It should be noted the pipeline relies on a host
machine for dataset processing, training and exporting a
light model, and cross-compiling the inference code. The
pipeline’s code and instructions for each step are available
in Github:

https://github.com/pelinski/bela-dl-pipeline

Shttps://github.com/acids-ircam/nn_tilde
“https://github.com/rodrigodzf/torchplugins
Ohttps://neutone.space/
Yhttps://youtu.be/jAIRf4nGgYT
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Figure 1: Pipeline for recording datasets and run-
ning neural networks on Bela. Green and blue
nodes indicate, respectively, that the code runs in
Bela or in the host machine.

In the pipeline’s first stage, a dataset of sensor signals
can be recorded in a single or in multiple Bela boards. The
raw data files are then transferred into the host machine
for the data processing step, where the signals recorded on
different boards are aligned sample-wise, and the dataset
is converted into a numpy'? array, which can be loaded
into deep learning python frameworks such as Tensorflow or
PyTorch. After the model is trained on the dataset, it must
be exported as a .tflite file, since the Bela inference code
is based on the TFLite C++ library. Finally, the inference
code is cross-compiled and transferred to Bela, where it can
be executed. Below, we describe each step in detail.

3.1 Recording and processing datasets

In the first stage of the pipeline, a dataset from analog
(e.g. piezo sensors, microphone signals) or digital (e.g. dis-
tance sensors, rotary encoders) inputs is recorded on Bela.
Our code, based on the BelaParallelComm library, allows
recording datasets simultaneously on various Bela boards,
which enables capturing more channels than those available
on a single Bela board (i.e. 8 analog and 16 digital inputs).
As illustrated in Figure 2, one of the Bela boards acts as a
transmitter (TX), whilst the other boards act as receivers
(RXs). Every number of frames, the TX Bela sends a digi-
tal bit to the RXs Bela boards. Besides logging the sensor
signals’ values, all Bela boards log the frame at which the
bit was sent (in the case of the TX), or received (in the case
of the RXs).

In the second stage of the pipeline, these log files are
transferred into the host machine, where the DataSyncer
library synchronises the signals at sample level and returns
a single numpy matrix in which every row corresponds to a
sensor channel and every column corresponds to a timestep.
This matrix can later be loaded into the user’s preferred
python deep learning framework. If the dataset is recorded
only on one Bela, the DataSyncer library will simply convert
it into a numpy matrix.

Recording datasets on multiple Bela boards is valuable

2https://numpy.org/
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Figure 2: Example of recording a dataset on four
different Bela boards, with three sensors (red cir-
cles) connected to each. The dashed line represents
the clock signal (a digital bit) sent from the trans-
mitter Bela (TX) to the receiver Bela boards (RX1,
RX2, RX3). The generated log files are processed
in the host platform.

for analysis tasks (e.g. to analyse the timing variations of
various performers simultaneously playing the same piece
on a piezo-based instrument) or if the Bela boards are used
as an interface to stream sensor data to a model running in
the host machine. Inferencing with a deep learning model
on Bela with inputs simultaneously proceeding from various
boards is a complex process involving real-time communi-
cation within Bela boards, which would require sufficient
bandwidth to enable the transmission of multichannel data
to the Bela board executing the model, or alternatively, dis-
tributing the network across boards.

3.2 Training and exporting a model

Given the limited computational capabilities of Bela, in the
third stage of the pipeline, the model training is carried out
on the laptop or, alternatively, on a computing cluster. In
the provided example code, we use PyTorch, a widely ex-
tended python deep-learning framework. However, Stefani
et al. [30] find that the TFLite inference engine is faster than
PyTorch’s C++ inference engine. For this reason, we wrote
the model in PyTorch and then exported it to Tensorflow
Lite using the TinyNeuralNetwork!'? library. The process
of converting PyTorch models to the TFLite format may
not always be straightforward, particularly when PyTorch
primitives lack a direct mapping to an equivalent TFLite
primitive. In such cases, it may be necessary to prototype
the model without using these primitives (i.e. explicitly
writing the model equations). Alternatively, the model may
be prototyped using Keras o Tensorflow, since these frame-
works can natively export a TFLite-compatible model.

In the provided example, we train an LSTM network that
receives two sensor signals (S1 and S2) and predicts the
future values for the sensor S1 signal. This is illustrated
in Figure 3. A model that predicts the future behaviour of
sensor signals has interesting options for performance, such

3https://github.com/alibaba/TinyNeuralNetwork
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Figure 3: Example model. The model receives a
window of the sensor channels S1 and S2 and pre-
dicts the following three windows of sensor S1.

as instruments that speculate about what the performer
might do, or instruments that sonify the prediction error.
In our setup, sensor S1 was an accelerometer attached to
a pendulum, and sensor S2 was a piezo sensor attached
to a drumstick. The dataset consists of recordings of the
sensor signals when hitting the pendulum (S1) with the
drumstick (S2). A window of 32 samples of the two sensor
channels is passed into the LSTM, which predicts the next
three windows of the S1 signal (in total, 96 samples). The
model, which runs in real-time in Bela, had 7096 parameters
and a size of IMB when exported as .tflite.

3.3 Cross-compiling

Building a complex library or program can take consider-
able time on an embedded device, which makes prototyping
and debugging tedious. Cross-compilation reduces building
times by compiling the program in a host platform (e.g.
a laptop) with greater computational resources. To facili-
tate cross-compilation for Bela, in the fourth stage of the
pipeline, we provide a dockerised container to encapsulate
the cross-compiler. The workflow is illustrated in Figure 4.
This enables compiling Bela code on any host that can run
Docker'* (i.e. Linux, Windows, MacOS). Docker is a tool to
package software and its dependencies in a container, which
allows running that software across platforms without need-
ing to install OS-specific dependencies each time. Inside
the Docker container, we use CMake'® for cross-compiling.
CMake is an open-source tool commonly used for building
C++ projects, in which the instructions for compilation are
passed in a CMakeLists.txt file. CMake also allows cross-
compiling code by using a “Toolchain”, a file that describes
the target platform. The toolchain file for Bela is included
in the provided Docker container.

To cross-compile Bela code using the Tensorflow library,
the library must be previously built inside the container.
Once the Tensorflow library has been compiled, its location
can be passed to the compiler using CMake. In our repos-
itory, we provide the pre-compiled libraries for Bela (and
instructions to cross-compile it), as well as example code
and the CMakeLists.txt file needed to compile it.

3.4 Inference in real-time and multi-threaded

processing

In this section, we discuss the real-time coding practices
that should be followed in the inference code for the deep
learning models to run in real-time (fifth stage of the
pipeline). These practices apply to any real-time system,
but they are particularly relevant here since neural net-
works’ inference is a computationally expensive operation.
Template code for running inference in Bela is included in
the provided repository. It should be noted that these prac-

Yhttps://wuw.docker . com/
""https://cmake.org/
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Figure 4: Cross-compilation for Bela. The inference
source code is compiled in a Docker container in
the host machine (e.g. a laptop). Both the Bela-
compatible executable and the .tflite model are
then transferred to the Bela.

tices will enable the model to run in real-time only if the
model is light enough to run using the device’s CPU. For
instance, Esling et al. [10] evaluate the theoretical embed-
dability of deep learning models in terms of compression
and complexity according to three metrics: floating point
operations, model disk size and number of read-write oper-
ations. Further work is needed to determine these parame-
ters’ thresholds on Bela.

3.4.1 Pre-allocating memory

Allocating memory is a non-deterministic process, which
means that its duration can not be known in advance. In
order to guarantee our code can run in real-time, we need
to ensure that every part of the code has a bounded exe-
cution time, and that it will meet our real-time deadlines.
Therefore, memory needs to be allocated before the audio
processing starts. In the Bela API, memory should be allo-
cated in the function setup(), which runs at the beginning
of a program’s execution and before the audio processing
starts.

3.4.2 Multi-threading to avoid underruns

The audio callback (in the Bela API, the render () function)
is a function in the audio thread that is called for each block
of samples and does the audio processing. In Figure 5, this
is indicated by the red boxes. For simplicity, we assume
that a block of samples processing always takes the same
amount of time (a fourth of a block) and that the inference
task only takes a block and a fourth'®. If the inference task
is called from the audio thread it will not be able to finish
on a block’s time, which will cause an underrun. Increasing
the block size would ensure that the inference computation
finishes on time, however, large block sizes add significant
inherent latency to the system.

Tasks that are executed occasionally (i.e. not in every
block, for example, after filling an input buffer) and that
are computationally expensive, such as the inference task,
should be called from an auxiliary thread with a lower pri-
ority than the audio thread. This is shown in Figure 5: in
orange, the inference task is called when the input buffer
is filled with two audio blocks (i.e. at the end of block 2).
However, it does not start running immediately at the be-

61n reality, the inference task, due to its computational com-
plexity, would probably take longer (e.g. 16 audio blocks).

ginning of block 3, since the audio callback has higher prior-
ity. Once the audio callback task is finished, the inference
task starts executing. When block 4 starts, the inference
task is put to sleep (indicated with a gray bar), and the
CPU executes the audio callback instead. When the audio
callback task is finished, the CPU is free again to complete
the inference computation. At the end of block 4, the input
buffer has been filled again (with samples from blocks 3 and
4), and the process repeats.

4. CONCLUSION

Many embedded platforms have lowered entry barriers to
real-time audio programming by abstracting complex tasks
through APIs and IDEs. However, deploying deep learn-
ing models involves an ecosystem of tools that demands
lower-level software development skills, such as building a
program using a custom CMake recipe. This paper presents
a pipeline for recording datasets and deploying neural mod-
els in the Bela embedded hardware platform. In contrast to
existing embedded AI projects that target a specific deep
learning task or application, this pipeline serves as a tem-
plate for programmers and makers to prototype and ex-
periment with deep neural networks for real-time musical
applications. With this pipeline, we aim to reduce the com-
plexity (or viscosity [4]) of this process and contribute to-
wards bridging the deep learning for audio and embedded
hardware communities in NIME.

As part of the pipeline, we provide tools for recording
multichannel datasets (by connecting multiple Bela boards)
and a dockerised cross-compilation environment. These
tools are of interest beyond their role in the pipeline: the
dataset recording tool allows capturing datasets from mul-
tichannel sensor arrays for later analysis, and the cross-
compiling environment significantly reduces the compilation
times.

Finally, the models will only run in real-time if their com-
putational complexity is low enough to run on the Bela
CPU. Future work will focus on including network compres-
sion and embeddability diagnosing tools into the pipeline.
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