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ABSTRACT

Contemporary orchestration practice harbours a number
of aesthetic inquiries relating to the employment and ar-
rangement of percussion instruments. Due in part to the
fact that percussion instruments largely occupy an inhar-
monic timbre space, they encompass a diverse and dis-
tinctly nuanced musical idiom in comparison to harmonic
instruments, both in terms of their textural interplay, mu-
sical function and cultural significance. In response to this
perspective, we present a neural network approach to the
parameter estimation of physically modelled, abstract per-
cussion instruments. The approach presented here serves
as our initial attempt towards creating a computer-assisted
orchestration methodology specifically targeting the mu-
sical employment and arrangement of inharmonic timbres
and percussive instruments. The neural architecture pre-
sented here has been trained and tested using a pair of
two-dimensional physical models, to gauge a sense of our
architecture’s successes and limitations as we continue to
expand this approach to include more two-dimensional
models. This works poses as our first technological in-
quiry into this field, which has here been quantitatively
assessed, with plans to undertake more rigorous and com-
parative tests in the near future.

Keywords: parameter estimation, orchestration, percus-
sion, artificial intelligence

1. INTRODUCTION

Percussion instruments play a crucial role within many
cultural idioms, and yet their timbral prominence in musi-
cal discourse is often difficult to discuss analytically and
prescriptively. Orchestration, which is “one of the hard-
est musical disciplines to define and transmit” [1, p.99],

is based upon many traditional approaches which strug-
gle to find words beyond the term ‘noise’ and other tex-
tural descriptions to describe the timbral effects of per-
cussion instruments [2, 3]. Although more contemporary
approaches to orchestration highlight this ‘noise-maker’
notion as antiquated [4, p.474], much of the discourse is
still limited in its scope in so far as timbral and spectral di-
rectives are concerned. In general, the detailed language
and understanding that we have surrounding orchestration
and arrangement with harmonic instruments does not en-
able detailed aesthetic explorations using the vast corpora
of inharmonic and percussive sounds composers and ar-
rangers have at their disposal.

This paper presents a neural network approach to-
wards the orchestration of percussion instruments centred
around estimating the parameters of physically modelled,
two-dimensional percussion instruments. So far, we have
developed a range of datasets focusing on specific para-
metric subsets of our synthetic percussion models, each
of which explores both the instruments’ geometry and
size. We have also trained a convolutional neural net-
work (CNN) on circular and rectangular membrane instru-
ments, designed to infer their size and aspect ratio. These
tools serve to both supply abstract sonic references to a
wide variety of percussive instruments and timbres, and
allow for the prediction of these sounds given an arbitrary
target or reference sound. This approach to computational
orchestration serves as a strong baseline from which we
intend to expand our designs to incorporate more arbitrar-
ily shaped drums and physical models in the future.

2. CULTURAL BACKGROUND

Despite the breadth of timbral diversity amongst percus-
sion instruments, there has yet to emerge a methodology
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through which percussion instruments can be employed
specifically to create determinate timbral palettes - to form
specific spectral colours by intentionally coalescing inhar-
monic instruments amongst themselves or alongside other
harmonic instruments. In a practical sense, it is not yet
easy to predict the degree to which a particular percussion
instrument will compliment the sounds around it. The tun-
ing of a snare, for example, is often decided from an iso-
lated reference point, focusing on the sonic qualities of
the snare itself, rather than from a place of understanding
how a particular tuning may compliment other concurrent
spectral and harmonic colours. The closest that western
cultural practices come to this timbral understanding is
through the idea of ‘tuned percussion’, which is largely
influenced by an anterior musical discourse surrounding
harmonic instruments, and often centres around percus-
sive instruments having their timbral content skewed to
more closely replicate the harmonic series [5,6]. This no-
tion is not strictly the case across all cultural practices,
with many examples of Indonesian gamelan ensembles
tuning their percussion instruments to instead comple-
ment one another [7]. In these cultural contexts, inhar-
monic spectra form the basis of their timbral and musical
languages, often resulting in ensembles of percussion in-
struments that gradually reform and refine their timbral
palettes over many generations [8].

Many of the theories underpinning this work originate
from, and are reinforced by, our past discovery led [9] and
practice based research projects, including our previous
work terracotta [10] amongst others [11]. Whilst compos-
ing the work terracotta, a great deal of care was given to
orchestrating the sounds of physically modelled, abstract
percussion instruments. Driven solely by aural technique,
each synthetic percussion instrument was tuned in rela-
tion to the other percussive sounds surrounding it, borrow-
ing from the technique previously highlighted in Indone-
sian gamelan practices. After completing this work, we
sought to challenge this approach to tuning and arranging
abstract percussion instruments through our still ongoing
composition study [12]. One of the key findings that we
have uncovered during this study, is that percussion in-
struments are intuitively composed with via cultural refer-
ences, rather than relying on the intricate spectral qualities
of the instruments themselves. In this sense, a percussion
instrument is typically incorporated into a work if it sat-
isfies a particular audiated reference. And similarly, in-
struments which do not have strong sonic references are
typically seen as less aesthetically applicable. This notion
is both a blessing and a curse, for it encourages us to cre-

ate strong idiomatic and semantic relationships with our
instrumental sounds, but it also slows our desires to in-
novate using unfamiliar and non-standardised sounds. If
the goal is to explore the extensive sonic possibilities of
percussion and inharmonic sounds, which it is here, then
we cannot rely on reference alone to satisfy our aesthetic
explorations.

3. TECHNOLOGICAL BACKGROUND

For this work, our primary task is to create a neural
network architecture that can perform parameter estima-
tion on physically modelled, abstract percussion instru-
ments. In terms of a more well defined ‘behavioural ob-
jective’ [13], we aim to create an end to end network that
can predict continuous material properties of a physical
model, based on an input audio sample. This would al-
low us to predict parameter information in response to ar-
bitrary target sounds, such as pre-composed musical mo-
ments or reference sounds that we may aim to emulate, as
well as perform parameter estimation based on constant
audio streams. We are here focusing our efforts on a small
subset of a physical model’s parameters, namely its geom-
etry and size. By enabling the prediction of a percussion
instrument’s material parameters in response to an arbi-
trary audio fragment, it will subsequently become possi-
ble to determine a complementary orchestral arrangement
involving both the sounds contained within the audio frag-
ment and the predicted instrument.

Parameter estimation networks have been developed
to satisfy a range of use cases, from interfacing with VST
synthesisers [14–16] and audio effects [17–19] to more
large scale differentiable DSP tasks [20]. In some of the
simpler use cases, parameter estimation has been achieved
using a linear regression model for each individual param-
eter, which served to produce continuous estimations for
each parameter in question [17, 18]. CNNs, on the other
hand, have been shown to outperform linear regression
models in a number of use cases [15,19], however in both
of the cases cited here, the objective had been translated
from a regression task into a classification task. Although
improved accuracy is a desired result, this redefinition of
the task at hand does not support our architectural and be-
havioural aims. In some cases, CNNs have been imple-
mented specifically to perform continuous parameter esti-
mation of physically modelled instruments [21, 22], how-
ever the successes of these approaches were not evaluated
in comparison to any other existing methodologies.

A similar and closely related field is the study of
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Figure 1. The architectural design for our neural parameter estimation network.

target-based orchestration. Target-based orchestration is
concerned with the transformation of a target sound, an ar-
bitrary fragment of audio, into a full orchestral reconstruc-
tion represented using symbolic notation. This idea stems
from the musical works of spectral composers, such as
Gérard Grisey and Tristan Murail, with a software driven
approach to orchestration originally being proposed back
in the early 2000s by the composer and orchestration spe-
cialist Yan Maresz [1]. Throughout the development of
numerous target-based orchestration systems, the predom-
inant architectural approach has been to use a genetic al-
gorithm [23–25], a methodology which is also used in the
recent software orchestration tool Orchidea [26, 27]. A
genetic algorithm is here used as a heuristic approach to
solving a knapsack-like problem [28], asserting that the
problem space be discretised and interpreted as a classifi-
cation based problem. Although powerful, this methodol-
ogy towards target-based orchestration is not directly ap-
plicable to our behavioural objective, due to its use of dis-
cretisation and classification. In recent years, however,
there have been several attempts to reproduce this func-
tionality using CNNs, as well as residual neural networks
and long short-term memory networks [29, 30]. These
models have not yet been shown to outperform Orchidea,
however they do point towards promising results with re-
spect to timbral representation and spectral orchestration.

4. NEURAL ARCHITECTURE

We base our neural network design on CRePE, a Convolu-
tional Representation for Pitch Estimation [31]. As its full
title suggests, CRePE was originally designed to work as
a frequency estimation algorithm, to compete with other
heuristic approaches to frequency estimation such as the
PYIN [32, 33] and SWIPE [34] algorithms. Within the
context of our use case, we took advantage of the fact that
predicting the size of a percussion instrument is directly

correlated with predicting its fundamental frequency. Ad-
ditionally, CRePE has already been shown to perform ac-
curate fundamental frequency estimation on inharmonic
sounds [31, p.164], suggesting its architectural design is
well suited for targeting the sounds of percussion instru-
ments. Although these inclinations do not necessarily
point towards a generalisable solution for the prediction of
any physical model parameter, we believe that our CRePE
inspired architecture will serve as a strong baseline for fu-
ture work.

Similar to CRePE, we have developed a deep neural
network with 6 convolutional layers and 1 fully connected
layer,1 as shown in figure 1. Each convolutional layer con-
sists of a 2D convolution, followed by a ReLU activation
function, batch normalisation and max pooling with a ker-
nel size of 2. The input to our network is a tensor of 1024
audio samples, allowing our model to perform parame-
ter estimation directly with raw audio waveforms without
the need for preprocessing or the use of alternative time-
frequency representations.

The biggest difference between our design and
CRePE is our output layer. CRePE was originally de-
signed to work as a classifier, and featured 360 output
nodes, with each one representing a 20-cent interval be-
tween 32.7Hz and 1975.5Hz [31, p.162]. As a result, the
loss function for this original architecture was calculated
using binary cross entropy loss. In our work, we imple-
mented a final layer which utilised a single output node
per parameter. We calculated our loss in accordance with
the mean squared error between our ground truth and pre-
dicted values, which was optimised using the Adam opti-
miser [35]. This approach allowed for the estimation of
continuous parameter values, which could also, in the-
ory, still be trained to estimate fundamental frequencies.

1 The code for this project is open sourced on GitHub:
https://github.com/lewiswolf/kac prediction
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So far, we have only trained and deployed this model us-
ing one or two parameters at a time, and have not studied
how well this architecture scales when incorporating large
amounts of continuous output nodes. We instead aim to
follow up on this specific inquiry in future works, as we
continue to extend this model to incorporate more com-
plex geometries with similarly complex numerical repre-
sentations.

By its design, CRePE is an extremely large model,
harbouring 22,239,976 trainable parameters. As part of
the CRePE codebase2 , there is an option to downsize this
number of parameters at the expense of decreased accu-
racy when deployed. After configuring our model in a
similar way, and performing tests that assess the detri-
ment of this reduced number of parameters, we did not ob-
serve a significant difference between there being a large
or small number of them. For this reason, we chose to
only work with a small number of parameters, the individ-
ual amounts for which are shown in figure 1. For a single
output node, our model used a total of only 394,289 pa-
rameters, with an additional 257 parameters for each addi-
tional output node. Limiting ourselves to a small amount
of parameters also enabled us to achieve improved perfor-
mance during both training and deployment.

5. DATASET MODELLING

Our model was trained to optimise for two distinct tasks
- finding the size of circular percussion instruments, and
finding the size and aspect ratio of rectangular percus-
sion instruments. To achieve these tasks, we trained our
neural network on a dataset of 5000 circular drum sounds
and a dataset of 5000 rectangular drum sounds, with each
dataset being generated using a similar two-dimensional
physical model [36]. Each dataset contained 1000 distinct
drum sizes and geometries, with each one being sampled
first in the centroid, and then in four random locations
across the domain. These datasets were both split into
training datasets, which were 70% of the original size, and
testing and evaluation datasets, with each being 15% of
the original size respectively.

Our physical model was based on modal syn-
thesis techniques, cumulatively synthesising individual
modal frequencies calculated in accordance with the two-
dimensional wave equation. In this use case, the linear so-
lution to the two-dimensional wave equation is calculated

2 The original source code for CRePE can also be found on
GitHub: https://github.com/marl/crepe

according to:

M∑
m=1

N∑
n=1

(cos(ωmnt) + sin(ωmnt))αmn (1)

where m and n are the modal indices, and M and N
are the maximum modal indices, here both chosen to be
10 [37, p.72].

For a rectangular domain with aspect ratio ϵ, the
modal frequencies ωmn can be calculated according to

ωmn = πγ

√
m2

ϵ
+ ϵn2 (2)

where γ is the relative wavespeed (1/s). We calculate γ
relative to the size of the drum in meters, L, the material
density in kg/m2, ρ, and the tension of the material in N/m,
T , such that:

γ =

√
T/ρ

L
(3)

For the two datasets used here, the material density and
tension were kept constant, at 0.2 kg/m2 and 2000 N/m
respectively, whilst the size of the models was randomly
selected from within the range 0.1 ≤ L ≤ 2 ∈ R and the
aspect ratio was randomly selected from within the range
1 ≤ ϵ ≤ 4 ∈ R. Under a Dirichlet boundary condition,
the modal amplitudes αmn can be calculated, relative to a
cartesian strike location [38, p.309], according to:

αmn(x, y) = sin

(
mπx√

ϵ

)
sin

(
nπy

√
ϵ
)

(4)

For a circular drum, it is more straightforward to no-
tate the two-dimensional wave equation according to:

M∑
m=1

N−1∑
n=0

(cos(πγzmnt) + sin(πγzmnt))αmn (5)

Here, the modal frequencies ω have been replaced with
πγzmn, where zmn is used to represent the mth positive
zero crossing of an nth order Bessel function of the first
kind, such that Jn(zmn) = 0 [37, p.74]. Again using a
Dirichlet boundary condition, the modal amplitudes for
a circular domain can be calculated, relative to a strike
location in polar coordinates [39, p.210], according to:

αmn(r, θ) = Jn(zmnr) (cos(nθ) + sin(nθ)) (6)
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6. EVALUATION

We initially tested our network using a random sweep of
of the hyperparameter space. Each test was conducted
with early stopping, which interrupted the training loop
after 32 epochs without improvement. We tested both full
batch and mini batch gradient descent, alternative optimis-
ers such a stochastic gradient descent, as well as a range of
values for both the dropout and learning rate. In conclu-
sion, we found that the most optimal parameters for each
task were the ones shown in table 1.

Table 1. Hyperparameters used when training our
neural network on circular and rectangular percus-
sion models.

Circular Rectangular
Batch Size 64 32
Dropout 0.25 0.4

Learning Rate 0.00025 0.005
Number of Epochs 267 171

Table 2. Mean squared error for our model when
predicting the size of circular and rectangular percus-
sion models, as well as the aspect ratio of rectangular
models.

Circular Rectangular
Aspect Ratio N/A 0.057

Size 0.001 0.047
Aggregate 0.001 0.033

After optimising the hyperparameters, we evaluated
our neural network using the evaluation dataset, calculat-
ing the mean squared error between the network’s pre-
dicted value and the dataset’s ground truth value. As
shown in table 2, we achieved an error of below 0.001
for the circular percussion network, which equates to a
standard deviation in size of around 3cm. Whilst for the
rectangular percussion network, we achieved an error of
∼0.033, and a standard deviation in size of around 20cm.
For the rectangular percussion use case, our neural net-
work was penalised by the instruments’ spectral relation-
ship between aspect ratio and size, and was not able to

generalise to both values as accurately as when size was
considered solely on its own. Although the spectral effects
of altering the size and aspect ratio of a rectangular per-
cussion instrument should be possible to numerically in-
vert, our network tended to slightly overestimate and then
compensate for one of the parameters when performing its
predictions. Given that these parameters can be heuristi-
cally retrieved independently of one another, this dimin-
ishing accuracy is something that we will be intimately
conscious of as we begin to extend our model to geomet-
ric tasks which are not numerically invertible.

7. DISCUSSION

This work serves as our initial inquiry into the field of or-
chestration with percussive and inharmonic sounds. So
far we have been able to develop a tool that can aid prac-
titioners in determining the size and aspect ratio of circu-
lar or rectangular percussion instruments. By approaching
orchestration from this technological perspective, we aim
to most prominently impact the practices of digital mu-
sicians and instrument designers, with the sensibility of
composers and orchestrators at the core of our method-
ology. With such an orchestration tool at our disposal,
we may thus be able to extend upon our instinctual aes-
thetic sensibilities, and curate musical moments that push
beyond the boundaries of our situated sonic vocabularies.
Using the technologies presented here, it has now become
more feasible to determine the material properties of a per-
cussion instrument that may compliment the spectral con-
tent of an arbitrary musical fragment. In the wake of these
successes and ideas, however, there remains a myriad of
ways with which we aim to develop upon this work.

For us, the next step is to extend this work to include
geometries beyond just the rudimentary circular and rect-
angular percussion models that we have so far been work-
ing with. By increasing our range of geometries to include
many more types of two-dimensional instruments, we aim
to extend upon the material details and timbral intrica-
cies that our neural architecture can account for. Some
of our work towards this directive has already been com-
pleted, having previously published a dataset of convex
polygonal drums [36], with more datasets to follow cen-
tering around elliptic and concave polygonal percussion
instruments. Many of these geometries require individual
means of representation, for which we also aim to dis-
cover a generalisable means of curating a learned repre-
sentation of these sonic and geometric objects.

To make sure that our future neural networks develop
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a robust relationship between a percussion instrument’s
timbral signature and its material and semantic descrip-
tions, we also aim to employ and develop our work using
a number of additional approaches to percussion synthe-
sis. This will include other approaches to physical mod-
elling, such as the finite difference time domain method,
as well as more contemporary approaches based on a neu-
ral audio synthesis [40]. By employing these models,
and training our future networks on datasets comprised
of multiple synthesis methodologies, it is our aim that
we may approach a more generalised impression of per-
cussion sounds, attributable to a range of both synthetic
and acoustic instruments. It is our impression that a work
curated towards a diverse array of synthetic and acoustic
soundworlds will increasingly present and refine its own
practical and theoretical value. These developments will
also involve further situated, practice based evaluations,
which will serve to challenge the liminal effectiveness re-
garding our core understanding of orchestration.

8. CONCLUSION

We have here presented a neural network approach to the
parameter estimation of physically modelled, circular and
rectangular percussion instruments. Our approach, which
centres around a CNN architecture, has enabled us to pre-
dict the size and aspect ratio of these percussion instru-
ments to a high degree of accuracy. This neural network
serves as our initial attempt towards creating a computer-
assisted orchestration methodology specifically targeting
the musical employment and arrangement of inharmonic
timbres and percussive instruments. Grounded by prac-
tice based research and other situated cultural perspec-
tives, we envision these tools being used in a variety of
musical settings. The findings and perspectives presented
here have highlighted as many questions as they have an-
swered, with plans to continue developing upon and test-
ing within this field in the near future.
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