
Freely available online PAPERS

F. Caspe, J. Shier, M. Sandler, C. Saitis, and A. McPherson,
“Designing Neural Synthesizers for Low-Latency Interaction,”
J. Audio Eng. Soc., vol. 73, no. 5, pp. 240–255 (2025 May).
https://doi.org/10.17743/jaes.2022.0204.

Designing Neural Synthesizers for
Low-Latency Interaction

FRANCO CASPE,
1, ∗

AES Student Member
(f.s.caspe@qmul.ac.uk)

, JORDIE SHIER,
1

(j.m.shier@qmul.ac.uk)
MARK SANDLER,

1
AES Fellow

(mark.sandler@qmul.ac.uk)
,

CHARALAMPOS SAITIS,
1

(c.saitis@qmul.ac.uk)
AND ANDREW MCPHERSON

2

(andrew.mcpherson@imperial.ac.uk)

1Centre for Digital Music, Queen Mary University of London, London, UK
2Dyson School of Engineering, Imperial College, London, UK

Neural audio synthesis (NAS) models offer interactive musical control over high-quality,
expressive audio generators. While these models can operate in real time, they often suffer
from high latency, making them unsuitable for intimate musical interaction. The impact of
architectural choices in deep learning models on audio latency remains largely unexplored in
the NAS literature. In this work, the authors investigate the sources of latency and jitter typically
found in interactive NAS models. They then apply this analysis to the task of timbre transfer
using the RAVE model (Realtime Audio Variational autoEncoder), a convolutional variational
autoencoder for audio waveforms introduced by Caillon and Esling in 2021. Finally, an iterative
design approach for optimizing latency is presented. This culminates with a model the authors
call BRAVE (Bravely Realtime Audio Variational autoEncoder), which is low-latency and
exhibits better pitch and loudness replication while showing timbre modification capabilities
similar to RAVE. It is implemented in a specialized inference framework for low-latency,
real-time inference, and a proof-of-concept audio plugin compatible with audio signals from
musical instruments is presented. The authors expect the challenges and guidelines described
in this document to support NAS researchers in designing models for low-latency inference
from the ground up, enriching the landscape of possibilities for musicians.

0 INTRODUCTION

In recent years, interest in interactive neural audio syn-
thesis (NAS) algorithms has increased within the music
research community. NAS algorithms utilize deep neural
networks (DNNs), trained on audio datasets, and recent ad-
vancements have paved the way for high-quality synthesis
[1]. The flexibility of these architectures has enabled a va-
riety of control modalities, ranging from MIDI input [2]
to audio-based control [3, 4] and has inspired entirely new
interfaces [5]. The use of variational autoencoders (VAEs)
[6] for NAS has been particularly fruitful, with the RAVE
model [4] facilitating a range of real-time interactive mu-
sical applications and inspiring the development of novel
interaction modalities [5, 7].

Many NAS algorithms support real-time inference, but
they are generally unsuitable for live instrumental perfor-
mance because they often introduce latencies of several

*To whom correspondence should be addressed, email:
f.s.caspe@qmul.ac.uk

hundred milliseconds [8]. This is an important factor in
music performance; systems that offer low latency can lead
to richer and better-perceived experiences [9–11]. However,
latency in NAS models has yet to be formally investigated,
which hinders the development of low-latency musical NAS
models.

This work first presents an analysis of primary latency
sources in interactive, audio-to-audio NAS algorithms.
These are (1) buffering delay, (2) cumulative delay (3) rep-
resentation delay (4) data-dependent latency, and (5) posi-
tional uncertainty (jitter). As a case study, RAVE’s archi-
tecture is analyzed for these sources of latency, highlighting
how this is unsuitable for low-latency interaction. To sup-
port this analysis, an open-source toolkit is designed that is
used to empirically evaluate latency during inference.

Building on the initial analysis, a design approach is pre-
sented where the RAVE architecture is iteratively modified
to achieve the target latency and jitter goals for musical
interaction, as well as computing requirements for real-
time inference on a consumer CPU. The iterative design

240 J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May



PAPERS DESIGNING NEURAL SYNTHESIZERS FOR LOW-LATENCY INTERACTION

culminates with a model the present authors call BRAVE
(Bravely Realtime Audio Variational autoEncoder), which
is released in a proof-of-concept audio plugin for musi-
cians to experiment with. See the accompanying website
for training source code and audio examples.1

The model variants are evaluated on an audio timbre
transfer task (i.e., modifying the timbre of an audio in-
put while preserving its musical content), and it is shown
that BRAVE improves upon RAVE in preserving musical
content (in terms of pitch and loudness) and presents sim-
ilar capabilities for reproducing the timbre of the training
dataset. The results of this analysis and evaluation point to
the importance of the model’s receptive field in enabling
rich musical affordances such as timbre transfer. The ability
of the decoder to consider time-varying trajectories of la-
tent representations, supported by a suitable receptive field,
is critical in the emergence of useful musical interactions.
These findings suggest practical methods for future devel-
opment of low-latency NAS systems beyond RAVE.

In summary, this work puts latency at the center of NAS
design. A design framework is provided that leverages ana-
lytical and empirical observations grounded in the authors’
musical goals, which motivate and inform architectural de-
cisions, ensuring that both performance and responsiveness
are prioritized. The authors hope that this perspective, along
with the results of this research, will not only support the
improvement of existing NAS models but also support the
development of novel systems that enrich the landscape of
Digital Musical Instruments (DMIs) for musicians.

1 BACKGROUND

1.1 Real-Time Constraints for Musical
Interaction

Low action-to-sound latency and timing stability are cru-
cial in DMIs for supporting control intimacy, time-keeping,
and developing performance skills and personal style [12].
Wessel and Wright [13] suggest an upper bound on latency
of 10 ms and a jitter (variation of latency) of ±1 ms for mu-
sical interaction. Furthermore, Jack et al. [11] conducted
an empirical study that supported this recommendation for
percussive instruments, demonstrating that 10 ms of latency
was acceptable to performers in the absence of jitter; how-
ever, 20 ms of latency or 10 ± 3 ms of latency significantly
degraded the experience of performance. Lester and Boley
[14] performed subjective tests with practicing musicians to
investigate the effect of latency under different monitoring
scenarios. Their results highlight the context-dependent na-
ture of latency perception with sensitivity among musicians
varying based on the instrument and type of monitoring de-
vice. In general, however, their results reinforce the 10-ms
bound for minimal impact on musical performance. This
work aims to reach strict latency constraints that approxi-
mate those of 10 ± 1 ms reported in previous work focused
on instrumental interaction.

1https://fcaspe.github.io/brave.

1.2 Interactive Neural Audio Synthesis
NAS is a technique that employs DNNs as learned audio

synthesizers. Neural synthesis has its origins in offline gen-
eration; however, increased computation capabilities have
enabled real-time inference, which has opened the doors for
NAS use in live performance systems with control schemes
that span from MIDI inputs [2, 15] to music information
retrieval features [16], latent spaces [17, 18], and other au-
dio signals [4, 19]. Despite this, latency is typically only
addressed after models are trained [8]. A common solution
in neural audio plug-in development is to report latency to
the audio workstation for it to be compensated by realign-
ing other audio tracks, which is incompatible with this live
use case.

Recently, a set of NAS models such as RAVE and the
Differentiable DSP (DDSP) Decoder [3] have gained pop-
ularity due to their ability to transform audio in real time
according to learned timbral and dynamic characteristics
of a dataset. These models can supplement musical instru-
ments with new timbral possibilities; however, such models
are not optimized for real-time interaction with the audio
of musical instruments, due to their high latency.

Low-latency exceptions to this case are specific models
designed for emulating traditional audio effects [20] and
also systems for audio-driven control of traditional synthe-
sizers like the Envelope Learning [21], Timbral Remap-
ping [22], and guitar percussive technique [23] models,
designed with low-latency interaction with musical instru-
ments in mind. However, these are restricted to specific
DSP synthesis techniques such as monophonic FM syn-
thesis, percussive 808-style emulation, or modal synthesis.
In certain contexts, the base latency of NAS models like
RAVE may be deemed acceptable, as in with novel musical
interfaces where a fast action-to-sound response is not nec-
essarily expected [24], or in audio plugins for production
use [8]. This paper focuses on audio-driven interactions,
specifically timbre transfer, where audio from an instru-
ment is transformed in real time. RAVE was chosen over
DDSP due to its flexibility in handling a broader range of
source material, without being constrained to monophonic
or harmonic instruments.

1.3 Real-Time Factor
Algorithms, including neural nets, are assessed for real-

time operation using the real-time factor (RTF), defined as
the ratio between processing time tp and the duration of the
input ti, RTF = tp/ti. It follows that a model requires an RTF
<1 for a specific block size to process it in real time with
specific hardware. Low-latency models require processing
short audio blocks at a high rate, which limits the available
processing time for a single inference pass.

1.4 Streaming NAS Algorithms
Audio algorithms that support real-time interaction must

process sequential blocks of one or more audio samples at
a time instead of the entire duration of an input in a single
pass. This approach is known as block processing. Gener-
ative models that support this scheme are called streaming

J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May 241

https://fcaspe.github.io/brave


CASPE ET AL. PAPERS

models. In this case, block processing has to be supported
by all the layers of a model [8]. Each layer is required to
keep track of its internal state between subsequent forward
passes to guarantee a continuous output signal between
blocks. For instance, convolutional layers are reconfigured
with a cached padding mechanism [25] where the end of
the input tensor is retained and used to pad the next input.

The outputs from causal systems do not depend on fu-
ture inputs. This is a strict requirement for streaming mod-
els. Nevertheless, noncausal systems with finite lookahead,
that is, systems that process a finite number of future in-
put timesteps, can be reconfigured for causal operation by
introducing delays that allow all required samples to be ac-
quired before processing. Although noncausal models typ-
ically afford better reconstruction quality [8, 26], in some
applications it is desirable to avoid this additional cumula-
tive delay by training in a causal way [27, 28, 23].

Designers of streaming models can achieve tolerable la-
tency for several tasks simply by employing causal training
and processing relatively short audio blocks. The authors
of the EnCodec neural codec [26] introduced a streaming
and causal architecture, reporting a theoretical minimum la-
tency of 13 ms, determined by the shortest block supported.
However, given the model size (23.3 M parameters), it is
unlikely that inference can be performed on a consumer
CPU at the frame rate that would support such latency. In
a plausible streaming scenario, longer audio windows are
accumulated before processing by the coder; this improves
its RTF but increases latency, although it remains within
tolerable limits for the task.

Similarly, the spoken dialog framework Moshi [29] uses
causal models to encode and decode audio frames of 80 ms,
performing temporal aggregation in parallel with a causal
language model, yielding a final latency of 200 ms. This
demonstrates how, for several applications, tolerable la-
tency can be achieved by optimizing specific system com-
ponents in isolation. Nevertheless, to support instrumental
interaction (10 ms total latency, 3 ms jitter), that authors ar-
gue that a more comprehensive analysis of potential latency
sources is necessary before design.

1.5 Timbre Transfer
Timbre transfer involves transforming a musical audio

signal so that timbre is altered while preserving key perfor-
mance parameters such as melodies, accents, and rhythm.
Most research in timbre transfer is grounded in the classic
(but disputed [30]) American National Standards Institute
definition, which describes timbre as an attribute of auditory
sensation that differentiates sounds of the same pitch and
loudness [31]. In this context, timbre is typically treated
as a global attribute encompassing the sonic quality of a
specific instrument.

Recent approaches in timbre transfer, such as DDSP [3,
32], build on this by combining explicit pitch and loudness
controls with deep learning models that implicitly model
timbre through a spectral loss function. These models have
demonstrated real-time timbre transfer capabilities [33] but

remain constrained by their application to monophonic and
harmonic instruments.

NAS provides more flexible, source-agnostic methods
for modeling musical audio and learning disentangled rep-
resentations [34]. Engel et al. pioneered an autoencoder
architecture [35], which enabled interpolations of instru-
mental timbres. Mor et al. [36] and Alinoori and Tzerpos
[37] extended this architecture for timbre transfer by using
instrument-specific WaveNet decoders and by applying a
teacher forcing technique with paired audio data, respec-
tively. Building on techniques from neural style transfer
in the image domain [38], timbre transfer has also been
tackled using various architectures, including autoencoders
[39–41], generative adversarial networks [42, 43], attention-
based methods [44], vector-quantized VAEs [45, 46], and,
more recently, diffusion models [47–49].

This work focuses on timbre transfer using RAVE,
an autoencoder-based NAS architecture. To the authors’
knowledge, RAVE is the only NAS-based timbre trans-
fer model to enable real-time, streaming operation; its
architecture—specifically the information bottleneck of its
autoencoder design—and training on datasets with few in-
struments have enabled timbre transfer affordances. This
exploration centers on how RAVE’s architectural design
influences latency and, critically, how this impacts timbre
transfer results.

2 LATENCY IN NEURAL AUDIO SYNTHESIS

This section first presents an analysis of the sources of
latency and jitter that can affect interactive NAS models.
Then, the focus of this work is set on RAVE, a successful
interactive NAS algorithm, and its sources of latency are
analyzed, highlighting how its design decisions hinder its
ability to achieve low action-to-sound latency.

2.1 Latency Sources
Here, the architectural sources of latency that result in

a model’s delayed response to an input are presented. We
identify four sources, namely, buffering, cumulative and
representation delay, and data-dependent latency.

2.1.1 Buffering
Real-time audio systems typically work in a pipeline

employing a double buffering approach, where one audio
block is computed while the next is being captured. In a
double buffering scenario, the total output buffering latency
is of two block lengths: one for sample acquisition and one
for computing [12]. Therefore, the block size determines
the upper limit for computation time. This latency source
is not visible during model training.

2.1.2 Cumulative Delay
Cumulative delay arises from reconfiguring noncausal

convolutional layers for streaming by adding a delay line
that the noncausal layers use for looking ahead in time. This
lag, which accumulates through successive layers, is called
cumulative delay. It can increase latency in noncausally

242 J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May



PAPERS DESIGNING NEURAL SYNTHESIZERS FOR LOW-LATENCY INTERACTION

trained models by hundreds of milliseconds [8] compared
to the same architecture trained causally. This delay appears
after training, when the model is reconfigured for stream-
ing. Its final value depends on the configuration of all the
layers and can be computed by propagating the delay of the
first layer throughout the network. The PyTorch package
cached conv presented by Caillon and Esling [8] can
compute this delay during model building.

2.1.3 Representation
Representation latency is denoted as the number of sam-

ples it takes a feature extractor to produce an expected out-
put. NAS models use audio features as input, such as funda-
mental frequency (F0) and loudness [3], filter banks such as
Pseudo-Quadrature Mirror Filters (PQMF) [4], short-time
Fourier transforms [50], or Mel filterbanks [51], to name a
few. For instance, linear phase finite impulse response (FIR)
filterbanks typically exhibit a group delay Dg of approxi-
mately half of the filter length Nf [52]. On the other hand,
other audio feature extractors, such as F0 trackers can ex-
hibit varying latency, depending on their analysis window
and the nature of the signal being measured [53].

2.1.4 Data-Dependent Latency
Convolutional layers are FIR filters, and their coefficients

depend ultimately on training data. Models based on con-
volutional networks can exhibit different degrees of latency
depending on the learned coefficients. However, this has not
been analyzed by previous literature. SEC. 3 analyzes the
effect of the training data on the latency, comparing models
with the same architecture trained on different datasets.

2.2 Positional Uncertainty (Jitter)
Lossy representations computed using block processing

encode the position of an event with a temporal resolution
of up to a block size. The authors call this positional un-
certainty. In this case, the exact position in samples of an
event is lost, and the model’s response will depend not only
on the input and training method but also on the relative
position of the event within an input window, which gen-
erates jitter. As mentioned earlier, jitter has to be ideally
kept under ±1 ms to support intimate control with musical
instruments. This requirement suggests that smaller block
sizes are desirable to minimize jitter.

2.3 Case Study: RAVE
The design of the RAVE model [4] is addressed because

of its extensive application in real-time synthesis and wide
interaction possibilities [7, 5, 54]. This work is based on
the v1 version, available at the official repository,2 and
presented in the original paper. For the analysis, the authors
assume models operating at a sample rate of 44.1 kHz.

RAVE is a convolutional VAE featuring a compressing
encoder and decompressing decoder with strided convolu-
tional layers. For efficiency purposes, it does not work di-
rectly with raw audio waveforms and instead encodes and

2https://github.com/acids-ircam/RAVE.

decodes an audio representation down-sampled and split
into 16 bands using PQMF [55].

2.3.1 Compression Ratio
The compression ratio determines how many audio sam-

ples are compressed into a single latent timestep. A higher
compression ratio typically makes audio generation more
efficient, with latent vectors representing high-level in-
formation [26, 56]. The encoder receives a PQMF rep-
resentation sequence and progressively down-samples it
to generate latent timesteps, each one a vector of size
128. The model’s compression ratio can be defined as
Cr = Nb · ∏M

j=1 s j , where Nb ∈ N is the number of bands
in the PQMF representation and S = {sn}M

n=1; sn ∈ N a se-
quence of strides along M convolutional blocks in the en-
coder. RAVE features Nb = 16, M = 4, and S = [4, 4, 4,
2] and therefore Cr = 2,048. The decoder receives a latent
sequence and upsamples it through M transposed convo-
lution [57], upsampling layers with stride configuration S,
interleaved with M residual stacks.

2.3.2 Receptive Field
The encoding and decoding processes have a much larger

temporal context than the compression ratio. This context
constitutes the memory of the system and is denoted recep-
tive field [27], which ensures temporal continuity across
audio blocks.

The receptive field of RAVE’s modules is computed.
Using backpropagation, the temporal length of the gradient
between inputs and a single output timestep is assessed.
The encoder features a receptive field Rfe = 15,449 samples,
enabled by the kernel length and striding of its convolutional
layers.

On the other hand, RAVE’s decoder processes previ-
ous latent timesteps due to its dilated residual stacks. Each
stack of K residual layers features a dilation configuration
D = {dn}K

n=1; dn ∈ N with residual layers becoming pro-
gressively more dilated to increase the number of latent
timesteps that are taken into account during the upsam-
pling process. RAVE features K = 3 residual layers with
dilations D = [1, 3, 5] repeated in M = 4 residual blocks
for a total receptive field Rfd = 16 latent timesteps. RAVE’s
total receptive field (Rf ) can be computed by considering
a sliding encoder receptive field Rfe that spans across Rfd

latent space timesteps [Eq. (1)]. This accounts for a total of
46,169 audio samples (1.04 s).

R f = R f e + (R f d − 1) ∗ Cr . (1)

2.3.3 Waveform Generation
RAVE generates audio samples with a waveform syn-

thesizer and a noise generator. The waveform synthesizer
projects the decoder’s output and generates a loudness en-
velope and multiband signal (with tanh activation) that is
inverted back into 2,048 samples using PQMF. The noise
generator is based on a strided convolutional stack that re-
compresses the decoder’s output using a ratio of 1,024 and
then performs Fast Fourier transform (FFT) convolution

J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May 243

https://github.com/acids-ircam/RAVE


CASPE ET AL. PAPERS

on white noise to generate another multiband signal that
is summed with the waveform synthesizer before PQMF
inversion.

2.3.4 Training
Models are first trained using representation learning,

which uses a multiresolution spectral reconstruction loss
as a metric to learn a suitable compressed representation,
and later with an adversarial fine-tuning to improve the
decoder’s audio quality. The noise generator is only ac-
tive during adversarial fine-tuning. This “slightly increases
the reconstruction naturalness of noisy signals” [4, p. 6].
Finally, RAVE can be trained in a causal or noncausal
fashion. Noncausal training allows the model to look ahead
half of its receptive field into the future. This increases
reconstruction quality at the expense of additional delay.
On the other hand, a causal training procedure ensures that
the model produces output only by accounting for current
and past input. The original RAVE model has 17.6 million
trainable parameters.

2.4 Sources of latency in RAVE
This section offers a critical analysis of the latency

sources present in RAVE’s architecture:

1. Buffering Delay: This is determined by two audio
blocks of 2,048 samples, equaling a total of 4,096
samples (92.9 ms).

2. Representation Delay: The PQMF module features
a minimum interband attenuation of 100 dB, imple-
mented with 16 polyphase FIR filters for encoding
and 16 for decoding. This requires filter lengths of
513 and 33 for the encoding and decoding process,
respectively. This yields a group delay of 256 sam-
ples for encoding and 16 samples for decoding. How-
ever, each sample at the decoder is then up-sampled
by the number of channels. This yields an equivalent
of 256 samples of delay at the decoder process, for a
total of 512 samples of representation delay (12 ms).

3. Cumulative Delay: It manifests when enabling
models for streaming that were trained using a non-
causal approach such as the original RAVE model.
The cached conv package is employed to measure
the theoretical cumulative delay in both encoder and
decoder and find that it corresponds to a total of 566
ms at 44.1 kHz, which is enough to cover RAVE’s
half-second lookahead.

4. Jitter: RAVE’s encoder acts as a learned feature
extractor that processes input audio in a block-by-
block fashion. Using sliding blocks would break the
temporal coherency of the latent space, which, dur-
ing training, encodes an input signal without over-
lap. Because of this, streaming RAVE has to operate
with a minimum block size of the compression ra-
tio Cr = 2,048 samples, which is compressed into
a single latent vector timestep of size 128. This can
heavily restrict an event’s temporal resolution, re-
sulting in jitter when decoding due to the positional

uncertainty of the latent representation. For example,
consider a trained model that requires an incoming
event to be fully captured by the input to decode it.
In this case, the jitter could easily cover the range of
an audio block, ±23.2 ms, for a total jitter span of
46.4 ms.

In summary: RAVE’s design decisions prioritize recon-
struction quality at an elevated compression ratio, which is
useful for latent space manipulation and automatic synthe-
sis through prior networks [4].

Considering the goal of interaction with musical in-
struments, it is unclear what architectural features enable
RAVE’s timbre transfer capabilities. A valid hypothesis
could be that a high compression ratio affords a high-level
representation of input, capturing complex temporal struc-
ture and allowing the system to learn to track melodies and
harmonies. However, RAVE’s long receptive field could
also aggregate such information.

Interestingly, the features that make this system attractive
for automatic music generation make them highly unsuit-
able for low-latency interaction: a high compression ratio,
present in both causal and noncausal versions, introduces
unacceptable buffering delay and jitter but enables efficient
inference with prior networks, whereas a noncausal mode of
operation introduces cumulative delay but improves quality
and does not affect offline generation. In the next section,
the design goals are reversed, aimed to develop a system
for low-latency musical performance.

3 ARCHITECTURE REDESIGN

RAVE’s autoencoding architecture works well for the
timbre transfer case but cannot support low-latency infer-
ence. This section discusses RAVE’s design choices and
examines their effect on RTF and sound-to-sound latency.
The latter is closely related to action-to-sound latency, rep-
resenting the delay between a captured sound-producing
action performed on an instrument and the model’s result-
ing output. This analysis is performed by systematically
and progressively modifying RAVE’s architecture towards
a low-latency variant.

Firstly, the datasets used for training the design itera-
tions are presented. Then, an empirical latency and RTF
measurement strategy used to guide the design space explo-
ration is introduced. Next, variations of RAVE are trained
with different Cr, PQMF attenuation, and Rf . This allows
for assessing their impact on latency and RTF. This section
closes by presenting BRAVE, a model suitable for low-
latency sound-to-sound interaction, which achieves ade-
quate latency <10 ms and low total jitter of about 3 ms.
Fig. 1 shows its architecture compared to RAVE’s.

3.1 Training Details and Datasets
All models are trained in a causal approach to minimize

the cumulative delay, following RAVE’s two-phase training
schedule over a total of 1.5 million steps: 1 million steps
of representation learning and 500,000 steps of adversar-

244 J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May



PAPERS DESIGNING NEURAL SYNTHESIZERS FOR LOW-LATENCY INTERACTION

Fig. 1. Simplified architectural comparison. BRAVE achieves adequate latency (<10 ms) and jitter (3 ms) by removing RAVE’s noise
generator and using a smaller encoder compression ratio, PQMF attenuation, and causal training, reducing its buffering, representation,
and cumulative delays respectively. The number of parameters is also reduced to improve its RTF (see Table 2 ). Numbers inmonospace
denote the compression ratio of intermediate results.

ial training with the original RAVE’s adversarial model.
Models that encode and decode a single audio channel are
trained. Furthermore, RAVE’s noise generator is removed
from all models except the RAVE reference, because of its
independent compression ratio, which should be optimized
separately, obscuring the analysis of latency and its sources.

The different variations of RAVE are trained using per-
cussive and harmonic datasets to analyze whether training
data affects the models’ latency:

• Filosax: An excerpt from the Filosax dataset [58]
containing 4.5 h of solo saxophone, extracted from
“Participant 1.” The last four takes of the same par-
ticipant are held and used as the test set.

• Drumset: A subset of the Expanded Groove MIDI
Dataset [60]. This includes 2 h 50 min of a drummer
performing on an electronic drum kit. The selected
subset comprises “drummer1” playing the “Acoustic
kit,” and samples from the denoted training set are
used. This dataset includes separated test samples,
which are employed for the test set.

The average loudness of each dataset is computed ac-
cording to ITU-R BS.1770-4 across all instances, obtaining
–18.5 and –36.0 LUFS for Filosax and Drumset, respec-
tively. This measurement is used to balance loudness on the
test datasets described in SEC. 4.2. All datasets are sampled
at 44.1 kHz. No postprocessing is applied to avoid altering
the instruments’ relationship between timbre and loudness.

3.2 Latency and RTF Evaluation
To guide the design exploration, latency and jitter are em-

pirically measured by testing trained models with a large
set of input signals. The system response time is measured
as determined by the difference between input and output
onset. RTF is also measured by collecting the time taken
for multiple forward passes using different block sizes.

This evaluation methodology is released as an open-source
Python package to support NAS developers (see accompa-
nying website).

3.2.1 Synthetic Excitation Signals
By synthesizing different excitation signals, the authors

can precisely control the onset times and generate a wide
range of spectral characteristics to assess the models’ re-
sponse under diverse circumstances. White noise is in-
cluded, a dense sinusoidal containing frequencies increas-
ing logarithmically by a half semitone filling a randomly
selected bandwidth and a harmonic signal with a random
pitch and number of harmonics. All signals are enveloped
with an exponential function that decays the amplitude by
60 dB over the duration of the signal.

Once signals are generated, they are front-padded with a
random duration of silence Ns ∼ ›’◦ {2,048, ..., 44,100}and
are back-padded with a second of silence. A full grid search
over signal type, length Nl ∈ {4,096, 44,100} and amplitude
A ∈ {0 dB, −6 dB} (equaling 12 different signals) was
conducted for each model and each test repeated 500 times.
All presented results were selected using the signal that
leads to the best average latency results for each model and
dataset, representing a best-case scenario.

3.2.2 Measuring Latency
The models were set for streaming operation, which in-

troduces cumulative delay. Then, latency is measured as the
delay between the start of the excitation signal and the first
onset measured in the output signal. The goal is to measure
the time required for a model to respond to an input. Two
different onset detectors were used, and the first detected
onset between the two is reported. The first is a time-domain
method, based on the AmpGate algorithm implemented in
the FluCoMa library [60], which responds quickly to per-
cussive onsets, and the second is the spectral-flux method
proposed by [61], which is more robust to different sig-

J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May 245



CASPE ET AL. PAPERS

nal characteristics such as slower attacks observed in wind
instruments.

The latency and jitter in samples are obtained and con-
verted to milliseconds using the datasets’ sampling rate
(44.1 kHz). To this value, the authors add the required
buffering delay, equal to two blocks of size equal to the
respective compression ratio, therefore showing the mini-
mum sound-to-sound action the model can exhibit. While
the error range of the onset detectors may vary depending
on the data the models render, impacting the jitter results,
the latency test is used as a guide for the designs; even
though the informed jitter ranges cannot be guaranteed to
be exact, models with better jitter are expected to show so
in the results.

3.2.3 Measuring RTF
The RTF measurement process starts by processing the

PyTorch models into scripted compute graphs (i.e., the se-
quence of blocks and layers of a model) using the tools
provided in the RAVE repository. The scripting process
generates a TorchScript3 file that can be loaded in Python
or C++ using Libtorch, Torch’s C++ API. Once loaded, the
models are compiled just in time before execution, optimiz-
ing the inference process and improving their RTF in com-
parison with a standard PyTorch inference pass. Scripted
models have been integrated into neural audio plugins with-
out additional optimizations [62, 63, 8]. Therefore, this is
considered a faithful approximation of performance in a
typical real-time use case.

For this process, cached convolutions are enabled in all
models to ensure they support streaming operations. How-
ever, the latent projection layers the original tool appends
to the models’ compute graph are skipped because of their
additional computational requirements. This does not mod-
ify the models’ performance and serves for latent space
manipulation, which is outside of the scope of this work.

A basic C++ application is designed that loads the
scripted models and times their execution time for different
audio block sizes. The models are executed 1,100 times,
with the first 100 executions employed as a “warm-up” for
the operating system scheduler to find an optimal way to
handle the inference workload and the rest registered for
computing statistics. Then, the application calculates the
RTF of each run taking 44.1 kHz as a reference sampling
rate and reports the mean and standard deviation. All mea-
surements are performed on a MacBook with an M1 Pro
CPU and 16 GB RAM, running MacOS Sonoma 14.3.

3.3 Compression Ratio Latency
This subsection includes empirical analysis of the effects

of compression ratio in the model, which directly impacts
buffering latency and jitter. RAVE versions that operate at
different compression ratios are trained, without altering
other model features such as PQMF attenuation, receptive
field, and number of parameters.

3https://pytorch.org/docs/stable/jit.html.

Table 1. Latency evaluation for different compression ratios.
Reported as the best average latency [best jitter] in

milliseconds.

Filosax Drumset

RAVE v1 244.83 [136.60] 439.89 [84.56]
c2048 r10 144.44 [116.28] 130.62 [42.97]
c1024 r10 82.56 [47.05] 70.40 [41.36]
c512 r10 43.42 [21.16] 39.80 [12.65]
c256 r10 30.63 [28.80] 25.77 [5.71]
c128 r10 20.50 [8.34] 18.50 [3.27]

The compression ratio of models is reduced by modifying
the strides at both the encoder and decoder. However, this
also directly affects their receptive field. Since the generator
has a fixed receptive field of latent vectors, halving the
number of samples encoded in each latent vector halves the
encoder’s receptive field. The authors compensate for this
by increasing the generator’s receptive field.

The generator’s residual blocks’ dilations are modified,
manipulating D. Since the residual layers feature a kernel
size of 5, the authors chose to exponentially increase the
dilation factor by a maximum rate of 3; this avoids holes in
the decoder’s receptive field. Furthermore, K is also modi-
fied in models with small compression ratios, adding more
layers to the generator’s residual block. This allows for
working with residual blocks with higher dilations at a rel-
atively small increase in the total number of parameters. In
doing so, models are tested with progressively smaller com-
pression ratios but with similar sizes and receptive fields.

Following this approach, models are designed by pro-
gressively halving the original compression ratio down to
128. This last model can operate with a small buffering de-
lay of 5.8 ms at a jitter of 2.9 ms, or ± 1.45 ms, which the
authors deem close enough to their initial latency and jitter
targets. However, other sources of latency are still present.

RAVE v1 and all model variations are trained on both
datasets. It is observed that all training processes con-
verge similarly. Latency tests are run against all the trained
models, and results are shown in Table 1. Please refer to
Table 2 for the complete architecture characteristics of
all trained models. It is observed that latency improves
greatly with causal training and drastically improves with
smaller compression ratios. As expected, the model iter-
ation c128 r10, with its compression ratio of 128, can
provide an acceptable jitter; however, results vary with the
training dataset, and all models exceed the 10-ms latency
requirement.

3.4 Multiband Decomposition Latency
Having lowered the latency and achieved an acceptable

jitter, the authors turn to the PQMF multiband decomposi-
tion module to find other sources of latency they can tune.
It is possible to reduce the group delay Dg of the filters
by relaxing the interband attenuation requirements, obtain-
ing shorter FIR filters with shorter delay. Although greater
interband attenuation is typically desired in DSP applica-
tions, leading to a better reconstruction with less sub-band

246 J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May

https://pytorch.org/docs/stable/jit.html


PAPERS DESIGNING NEURAL SYNTHESIZERS FOR LOW-LATENCY INTERACTION

Table 2. Summary of models implemented. All models have a latent vector size of 128. All of them are causal and do not have a noise
generator, with exception of RAVE. The receptive field assumes a sample rate of 44.1 kHz.

Model Hidden Sizes S: Strides D: Dilations

PQMF
Attenuation

(dB)

Cr: Com-
pression
Ratios

Rf :
Recaptive
Field (ms)

No.
Parameters

(M)

RAVE v1 (noncausal) [64, 128, 256, 512] [4, 4, 4, 2] [1,3,5] 100 2048 1047 17.6
c2048 r10 [64, 128, 256, 512] [4, 4, 4, 2] [1,3,5] 100 2048 1047 17.5
c1024 r10 [64, 128, 256, 512] [4, 4, 2, 2] [3,9,27] 100 1024 1070 16.9
c512 r10 [64, 128, 256, 512] [4, 2, 2, 2] [3,9,18,36] 100 512 960 18.4
c256 r10 [64, 128, 256, 512] [2, 2, 2, 2] [3,9,27,36] 100 256 973 16.2
c128 r10 [64, 128, 256, 512] [2,2,2,1] [3,9,27,45,63] 100 128 955 17.3
c128 r10 p70 [64, 128, 256, 512] [2,2,2,1] [3,9,27,45,63] 70 128 947 17.3
c128 r10 p40 [64, 128, 256, 512] [2,2,2,1] [3,9,27,45,63] 40 128 941 17.3
c128 r05 p40 [64, 128, 256, 512] [2,2,2,1] [3,9,27,36] 40 128 517 15.2
BRAVE [32. 64, 128, 256] [2,2,2,1] [3,9,27,36] 40 128 517 4.9

Table 3. Latency evaluation for different PQMF attenuations.
All modes have the same Cr. Reported as the best average
latency [best jitter] in milliseconds. c128 r05 p40 and

BRAVE are optimized for RTF.

Attenuation
(dB) Filosax Drumset

c128 r10 100 20.50 [8.34] 18.50 [3.27]
c128 r10 p70 70 13.58 [10.86] 13.19 [4.22]
c128 r10 p40 40 10.46 [6.30] 9.92 [3.36]
c128 r05 p40 40 10.22 [7.57] 9.67 [4.31]
BRAVE 40 10.08 [7.80] 9.75 [2.47]

aliasing, the impact is less clear in NAS where the leak-
age between sub-bands could be leveraged by the model or
compensated for during training.

Variations of c128 r10 are trained with attenuations of
70 and 40 dB, which are denoted as c128 r10 p70 and
c128 r10 p40. They feature PQMF group delays of 256
and 128 samples, respectively, while featuring the same
Cr and Rf of c128 r10. Their architectural description is
shown in Table 2. Next, their latency response is evaluated.
Results are shown in Table 3, where a reduction in la-
tency with less PQMF attenuation is observed. The latency
target has nearly been reached with the c128 r10 p40
model, which exhibits latencies around 10 ms, though it
shows slightly higher-than-desired jitter values. Nonethe-
less, these results are considered suitably close to the goal
to consider it for real-time implementation.

3.5 Optimizing for RTF
Real-time execution can be exceptionally challenging

for low-latency models where inference is performed many
times per second (i.e., at a high inference frame rate). This
is partially due to the increasing number of scaffolding
operations conducted by the inference framework such as
memory allocation for inputs, outputs, and intermediate re-
sults [64]: a model can exhibit a higher RTF if the inference
is computed at a smaller block size. On the other hand,
the lower Cr models have a similar number of weights
compared to the original RAVE but generate smaller audio
blocks at each pass, meaning it is less efficient in terms of
computing requirements per sample.

The initial low-latency model, c128 r10 p40, cannot
run in real time on the reference CPU. The authors set
out then to reduce its computational requirements. Firstly,
the layers with higher dilation in the generator are removed,
effectively halving its receptive field. This model is referred
to as c128 r05 p40. Next, the hidden sizes of both the
encoder and decoder are halved to achieve a model roughly
one-third the original size, which can be computed at a
suitable RTF. In line with this, the number of channels of
its discriminator is also halved. This model is denoted as
BRAVE. See Table 2 for architectural details.

The lightweight models’ latency is evaluated, shown in
Table 3 finding that the modifications do not substantially
impact latency. Then, the RTF test is run on these models.
Results are shown in Table 4. All models are observed to
drastically improve their RTF with larger block sizes. For
instance, BRAVE can be run in real time but only at a larger
block size of 256, which increases buffering latency. The
authors suspect this is due to scaffolding operations within
scripted models that require a fixed time, such as memory
allocation [65]. This prompts evaluation of an implementa-
tion using different tools to avoid that temporal cost.

3.6 Low-Latency Implementation
A custom C++ inference developed by the first author

is presented to support the BRAVE autoencoding architec-
ture and some variations. The engine is based on RTNeural
[66], a DNN inference library for real-time DNN inference
for audio applications such as audio plug-ins. RTNeural is
chosen for its design, which transparently supports causal,
block-based inference, prompting the designer to think of
the model inference process as a streaming operation. Fur-
thermore, it preallocates all memory before inference; this
is critical for working at the high frame rates required for
low latency. RTNeural is extended to support strided and
transposed convolutions and implement all model compo-
nents.

Three different causal models are implemented in this
architecture: a version of RAVE v1 without noise genera-
tor (c2048 r10), a low-latency and high-capacity model
(c128 r05 p40), and BRAVE. The fastest implementa-
tion is achieved in the reference M1 Pro CPU with the Stan-

J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May 247



CASPE ET AL. PAPERS

Table 4. RTF for selected block sizes shown as mean (standard deviation).

Model 128 256 512 2,048

RAVE v1 ··· ··· ··· 0.16 (0.02)
c2048 r10 ··· ··· ··· 0.15 (0.02)
c128 r10 2.62 (0.07) 1.43 (0.03) 0.74 (0.05) 0.24 (0.04)
c128 r10 p70 2.61 (0.06) 1.42 (0.03) 0.73 (0.02) 0.24 (0.05)
c128 r10 p40 2.60 (0.06) 1.42 (0.03) 0.73 (0.02) 0.24 (0.04)
c128 r05 p40 2.20 (0.06) 1.22 (0.03) 0.62 (0.01) 0.20 (0.04)
BRAVE 1.18 (0.07) 0.65 (0.03) 0.37 (0.08) 0.10 (0.003)

dard Template Library backend of RTNeural, using Apple
Clang 15. Table 5 compares the RTF between the RTNeural
and Libtorch implementations, showing that the latter can
execute BRAVE comfortably at the lowest block size and
latency, unlike Libtorch. However, it does not improve its
RTF with longer block sizes for any of the models, with
Libtorch becoming a more efficient option for longer block
sizes. It is suspected that Libtorch may employ computing
algorithms optimized for different block sizes. This work’s
models are employed in a proof-of-concept audio plugin
(see the accompanying webpage).

4 EVALUATION

This section sets out to determine whether the de-
sign variations can support timbre transfer, testing (1)
the models’ audio quality, (2) their timbre modifi-
cation, and (3) their content preservation capabilities,
comparing them to RAVE’s. Models that progressively
accumulate modifications are selected to assess how
causality (c2048 r10), compression ratio (c128 r10),
PQMF attenuation (c128 r10 p40), receptive field
(c128 r05 p40), and model capacity (BRAVE) affect
timbre transfer.

Firstly, their audio quality is assessed using a simple
resynthesis task. Then, the datasets employed are presented
as sources for timbre transfer. Next, the authors evaluate
whether a high compression ratio is necessary to perform
timbre transfer or it can be achieved using a small com-
pression ratio but a sizable receptive field. To this end,
the maximum mean discrepancy (MMD) test is introduced,
similar to that of Bitton et al. [39], designed to quantify
differences in timbre distributions between the original and
transferred audios. Finally, the authors investigate if work-
ing with smaller block sizes can improve the temporal reso-
lution of rendered musical events. The models’ capabilities

Table 6. FAD computed on resynthesis of test set.

Filosax Drumset

RAVE v1 43.95 1.48
c2048 r10 41.54 1.55
c128 r10 6.99 1.19
c128 r10 p40 7.58 1.11
c128 r05 p40 6.04 1.10
BRAVE 9.03 2.21
Test Set 0.22 0.28

Values in bold indicate the model with best FAD for the chosen dataset.

are compared to follow musical dynamics and melodies in
timbre transfer by evaluating loudness curves and funda-
mental frequency rendering.

4.1 Audio Quality Assessment
The widely used Fréchet Audio Distance (FAD) [66]

is employed to evaluate audio quality using the VGGish
model. The background embeddings are computed using
both the Drumset and Filosax training datasets. Evaluation
embeddings are computed on audio from their correspond-
ing test datasets, which have been resynthesized by each
model variant. The original test set is added as an addi-
tional evaluation embedding for reference. FAD is com-
puted between background and evaluation embeddings for
each model variant. Results are shown in Table 6.

All the models are observed to score similarly on their
respective datasets, which indicates similar audio quality,
with a slight degradation in BRAVE possibly due to its
smaller capacity. The notable exception is the high com-
pression ratio models trained on Filosax. Such variations in
score are suspected to be due to unstable adversarial train-
ing, which negatively impacts the capability of the models
to replicate pitched sounds. This suggests that such models
may require larger datasets to stabilize training, as evi-

Table 5. RTF comparison of Libtorch and RTNeural (denoted with †) models at different block sizes.

Model 128 256 512 2,048

c2048 r10 ··· ··· ··· 0.15 (0.02)
c2048 r10† ··· ··· ··· 0.30 (0.007)
c128 r05 p40 2.20 (0.06) 1.22 (0.03) 0.62 (0.01) 0.20 (0.04)
c128 r05 p40† 1.02 (0.005) 1.01 (0.010) 1.01 (0.029) 1.00 (0.008)
BRAVE 1.18 (0.07) 0.65 (0.03) 0.37 (0.08) 0.10 (0.003)
BRAVE† 0.29 (0.006) 0.29 (0.005) 0.29 (0.064) 0.29 (0.020)

248 J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May



PAPERS DESIGNING NEURAL SYNTHESIZERS FOR LOW-LATENCY INTERACTION

denced by the size of datasets used in the original RAVE
implementation, which are about one order of magnitude
bigger than the present one. Please refer to the accompany-
ing website for audio examples.

4.2 Testing Datasets
Audio corpora are selected for testing the timbre transfer

capabilities of the models. Different test sets are employed,
depending on whether the models were trained on Filosax
(melodic test set) or Drumset (percussive test set).

The melodic test set includes “Viola,” 26 min of solo
viola recordings extracted from the URMP dataset [67],
and “Svoice,” 16.5 min of female singing—participant 1
and participant 12 [68]. Each track of these datasets is
loudness-normalized to –18 LUFS, to match the Filosax
dataset loudness.

The percussive test set includes “Candombe,” presented
in Nunes et al. [69], for which a single recording is selected
for each artist totaling 19 min, and “Beatbox,” employing
the complete Amateur Vocal Percussion Dataset [70] and
totaling 18 min. Each track is loudness normalized to –36
LUFS, to match that of the Drumset dataset.

4.3 Timbre Transfer Evaluation
A numerical analysis of timbre transfer performance is

sought to compare the capabilities of this model to the orig-
inal RAVE model. As ground truth audio signals are not
available in this evaluation, distributions of timbre features
are considered, and timbre transfer is viewed as transform-
ing from one distribution to another [71]. The authors turn
to the MMD [72], a two-sample statistical test to determine
whether samples are drawn from different distributions,
which has been successfully applied to evaluate audio tim-
bre transfer [39].

Given independent samples {xi }n
i=1 from random variable

X following distribution P, X ∼ P, and {y j }m
j=1 from Y ∼ Q,

the unbiased empirical estimator of the squared MMD is

MMD2
u[X, Y ] = 1

n(n − 1)

n∑

i=1

n∑

j=1
j �=i

k(xi , x j )

+ 1

m(m − 1)

m∑

i=1

m∑

j=1
j �=i

k(yi , y j )

− 2

nm

n∑

i=1

m∑

j=1

k(xi , y j ), (2)

where k is a Gaussian kernel k(x, x ′) = exp(− 1
2σ

‖x − x ′‖2)
and σ is the bandwidth parameter. σ is selected indepen-
dently for each test as the median L2 distance between all
pairwise sample combinations [72].

Timbre distributions are generated for each audio cor-
pus using Mel-frequency cepstral coefficients (MFCCs).
MFCCs are computed with FFTs of size 2,048 with 75%
overlap and 128 Mel-bands; MFCCs 2–13 are then selected
[46]. Texture windows are created from MFCC frames by
average pooling using a window of 40 frames (≈0.5 s) with

50% overlap. The set of texture windows for each audio
corpora is used for MMD.

Timbre transfer is performed by running inference over
the testing datasets using selected models and storing the
results of each model and test set as separate corpora. Fur-
thermore, the held-out Filosax and Drumset sets are kept as
references: they are employed as anchors to evaluate target
similarity. For each timbre transferred corpus, two MMD
distances are calculated: one from the test set (input instru-
ment) and the other from the reference set (target instru-
ment). Additionally, the cross-similarity (distance between
the test and reference sets) and the self-similarity (distances
obtained by sampling from the same test or reference dis-
tributions) are assessed. Successful transfer results should
yield MMD scores lower than the cross-similarity, demon-
strating that the timbre of the converted audio becomes
more aligned with that of the reference dataset. Results are
shown in Fig. 2.

It is observed that the MMD scores do not vary signif-
icantly across the models. This indicates that the resulting
MFCC distributions are not affected by model causality,
PQMF attenuation, or compression ratio, suggesting that
the timbre modification capabilities of all models are af-
forded by their receptive field, which even for BRAVE,
covers a sizable 0.5 s. The exceptions are the high com-
pression ratio models trained on Filosax, which can be
explained due to their inability to render pitched sounds, as
discussed in SEC. 4.1.

4.4 Content Preservation Evaluation
This section presents an analysis of the second require-

ment for successful timbre transfer: content preservation.
A loudness similarity is computed between the test and
timbre-transferred corpora, which can account for dynam-
ics, accents, and rhythm information. Additionally, the
models’ capability of preserving the fundamental frequency
of the melodic test sets is evaluated, accounting for pitched
and melodic content.

Pitch evaluation utilizes pitch tracking computed on in-
put and transferred audio and evaluates differences using
pitch accuracy. Following [73], CREPE [74] is used for
pitch tracking, which produces pitch estimates at a frame
rate of 200 Hz. Results are filtered using a pitch confidence
threshold of 0.85 to account for instabilities in pitch es-
timates. Accuracy is measured using the overall accuracy
metric described by Salamon et al. [75]. This measures the
proportion of frames that are accurately labeled as voiced
(i.e., have a pitch confidence above the threshold) and are
within 0.5 semitones of the input if the frame is voiced.
Pitch evaluation results are shown in Table 7.

Loudness error is the L1 distance between loudness
envelopes computed on the input and output audio.
Following Hantrakul et al. [73], loudness is calculated
by A-weighting the power spectrum, which models the
frequency-dependent hearing sensitivities of the human ear
by de-emphasizing low and high frequencies. A-weighed
power spectrums are then converted to decibel units by log-
scaling. Results are computed using an FFT size of 2,048

J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May 249



CASPE ET AL. PAPERS

Fig. 2. The MMD distance between the timbre transfer results of each model and the input (top row) and target instrument (bottom
row) datasets are computed. Along the horizontal, entries in bold show dataset cross-similarity and self-similarity. Following this, MMD
results for timbre transfer of all model variants. Lower values for the target instrument indicate closer alignment to the target distribution
and therefore, a more successful timbre transfer.

Table 7. Pitch accuracy evaluated on melodic test sets. Higher
values are better.

Svoice Viola

RAVE v1 0.29 0.53
c2048 r10 0.28 0.53
c128 r10 0.64 0.65
c128 r10 p40 0.62 0.63
c128 r05 p40 0.63 0.67
BRAVE 0.68 0.69

Values in bold indicate the model with best pitch content preservation.

Table 8. Loudness L1 evaluated on both the percussive and
melodic test sets. Lower values are better.

Beatbox Candombe Svoice Viola

RAVE v1 14.24 13.75 33.63 24.69
c2048 r10 13.28 8.21 34.24 31.83
c128 r10 9.84 4.09 12.65 9.02
c128 r10 p40 10.97 4.08 13.68 10.02
c128 r05 p40 7.99 4.04 12.73 7.66
BRAVE 7.89 4.31 9.94 7.63

Values in bold indicate the model exhibiting the best loudness
preservation for each dataset.

samples and a hop size of 256 samples. Loudness L1 dis-
tance results are shown in Table 8.

It is observed that all content metrics improve with a
smaller compression ratio. This is attributed to the higher
temporal resolution afforded by all models of Cr = 128,
which permits them to follow closely fast-varying input
signal characteristics related to pitch variations and accents.
Interestingly, the BRAVE model outperforms their higher-
capacity counterparts on many test sets, with minimal audio
quality loss. Being a lower-capacity model, it is suspected
to learn to rely much more on the encoder to generate
plausible output, allowing it to relay more content to the
timbre-transferred output.

4.5 A Comment on the Interaction Capabilities
of BRAVE

Several BRAVE models are deployed on the demo plu-
gin, which can be downloaded from the accompanying web-
page. They are played using different instruments such as
guitar, congas, and voice. The models demonstrate fast re-
sponse on transients, resulting in very low perceived la-
tency. However, in models like Drumset, the transients ap-
pear a bit soft or smeared. Despite this, they perform well in
percussive transformations. For pitched audio, the results
are mixed. While the Filosax model also exhibits low la-
tency, it often struggles with correct pitch rendering, which
is essential for supporting natural interaction with many
instruments. In contrast, other models tested show better
performance in this regard; further investigation on pitch
performance is left for future work.

4.6 Discussion of Results
4.6.1 Data-Dependent Latency and Jitter

In NAS systems that leverage convolutional layers, the
entire system can be viewed as a complex, nonlinear filter
where filter coefficients are learned through a data-driven
process. The response of this system, and thereby the over-
all group delay, is characterized by the underlying con-
volutional filters. While the analytic determination of the
group delay in such systems is complicated due to nonlin-
earities, it was empirically observed that the nature of the
data used to train these models had an impact on latency
and jitter, consistently measuring lower latency and jitter
with the Drumset dataset as compared to the Filosax. This
suggests that signals with strong transients resulted in the
models prioritizing temporal accuracy, which contributes
heavily to the error in the multiresolution spectral loss in
bands with higher temporal resolution. Some variation of
the jitter in the results could be attributed to a different error
range of the onset detector between datasets.

250 J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May



PAPERS DESIGNING NEURAL SYNTHESIZERS FOR LOW-LATENCY INTERACTION

Overall, the authors note that there is a complex relation-
ship between the training data, loss functions, and model
latency, which they highlight as an area for future investi-
gation. For example, time-domain audio loss functions may
be incorporated to improve temporal precision and phase
reconstruction of the model [76]; however, this may be in-
compatible with the VAE objective.

4.6.2 Timbre Transfer Affordances
The timbre transfer test results indicate that timbre modi-

fication can be afforded by a large receptive field, evidenced
by the similar MMD score between BRAVE and RAVE.
Furthermore, content rendering improves when working at
smaller compression ratios. This is in line with the typ-
ical timbre transfer design assumptions that assume that
musical content varies over time while timbre is a global
attribute. Finally, it is surprising to see similar performance
between this lower-capacity BRAVE model and its low-
compression ratio counterparts. This suggests that (1) fur-
ther performance gains can be obtained by a careful revision
of BRAVE’s structure toward a smaller model and (2) there
may be potential for increasing audio fidelity in bigger
models.

4.6.3 Design Challenges for Low-Latency NAS
Designing NAS algorithms for low latency requires

putting this issue at the center of the design problem and
carefully inspecting the audio representations and the ar-
chitecture to ensure these do not increase response time. It
is found that a representation learned with a VAE, rendered
as a time-varying trajectory progressively constructed over
short audio windows in a temporally causal manner by a
compressing encoder and aggregated by a decoder with
a considerable receptive field, works well for this timbre
transfer task.

The authors believe this approach can work for other low-
latency interactive NAS tasks, provided all modules within
the network are designed to support such latent trajectories.
For instance, a low-latency redesign of RAVE’s noise gen-
erator for low compression ratio operation could improve
BRAVE’s audio quality. One possibility would be the addi-
tion of low-latency, differentiable infinite impulse response
filters [77] controlled by an additional decoder submodule
with an appropriate receptive field. The authors expect their
design experience can guide other researchers in the design
of complex low-latency NAS algorithms, while leveraging
recent inference tools that can simplify implementation [65,
64].

5 CONCLUSION

This paper advocated for designing interactive NAS mod-
els from the ground up, considering latency at each step.
To support this design process, an overview of common
sources of latency and jitter was presented, along with
a method for empirically measuring it. It was found that
RAVE, a model with extensive interactive applications, in-

curs a level of latency that makes it unsuitable for audio-
driven interaction with traditional musical instruments.

The redesign process puts latency at the center of the
problem and allows for designing architectures that are
suitable for real-time interaction with musical instruments.
This can enable timbre transfer in use cases that as of today
have been relegated to production environments or specially
designed musical interfaces.

The low-latency timbre transfer system holds the po-
tential to foster intimate control of instruments and inter-
faces with an extended timbral palette. However, its data-
dependent performance may limit interaction possibilities,
and further work should look into how its affordances are
affected by data and its corresponding latent representa-
tions.

6 ACKNOWLEDGMENT

This work is supported by the Centre for Doctoral Train-
ing in Artificial Intelligence and Music, Engineering and
Physical Sciences Research Council, UK Research and
Innovation (EP/S022694/1). This research utilized Queen
Mary’s Apocrita High-Performance Computing facility,
supported by Queen Mary University of London Research-
IT (http://doi.org/10.5281/zenodo.438045).

7 REFERENCES

[1] A. van den Oord, S. Dieleman, H. Zen, et al.,
“WaveNet: A Generative Model for Raw Audio,” in Pro-
ceedings of the 9th ISCA Workshop on Speech Synthesis
Workshop (SSW), p. 125 (Sunnyvale, ) (2016 Sep.).

[2] G. Narita, J. Shimizu, and T. Akama, “GANStru-
ment: Adversarial Instrument Sound Synthesis With
Pitch-Invariant Instance Conditioning,” arXiv preprint
arXiv:2211.05385 (2023 Mar.).

[3] J. Engel, L. Hantrakul, C. Gu, and A. Roberts,
“DDSP: Differentiable Digital Signal Processing,” in Pro-
ceedings of the 8th International Conference on Learn-
ing Representations (ICLR), pp. 1210–1228 (Addis Ababa,
Ethiopia) (2020 Apr.).

[4] A. Caillon and P. Esling, “RAVE: A Variational Au-
toencoder for Fast and High-Quality Neural Audio Synthe-
sis,” arXiv preprint arXiv:2111:05011 (2021 Dec.).

[5] N. Privato, T. Magnusson, and E. T. Einarsson, “Mag-
netic Interactions as a Somatosensory Interface,” in Pro-
ceedings of the 23rd International Conference on New In-
terfaces for Musical Expression (NIME), paper 3 (Mexico
City, Mexico) (2023 May).

[6] D. P. Kingma and M. Welling, “Auto-Encoding
Variational Bayes,” arXiv preprint arXiv:1312.6114 (2014
May).

[7] H. Scurto and L. Postel, “Soundwalking Deep Latent
Spaces,” in Proceedings of the 23rd International Confer-
ence on New Interfaces for Musical Expression (NIME),
paper 23 (Mexico City, Mexico) (2023 May).

[8] A. Caillon and P. Esling, “Streamable Neural Audio
Synthesis With Non-Causal Convolutions,” arXiv preprint
arXiv:2204.07064 (2022 Apr.).

J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May 251

http://doi.org/10.5281/zenodo.438045


CASPE ET AL. PAPERS

[9] A. Schmid, M. Ambros, J. Bogon, and R. Wim-
mer, “Measuring the Just Noticeable Difference for
Audio Latency,” in Proceedings of the 19th Inter-
national Audio Mostly Conference: Explorations in
Sonic Cultures, pp. 325–331 (Milan, Italy) (2024 Sep.).
https://doi.org/10.1145/3678299.3678331.

[10] F. Morreale, A. Guidi, and A. McPherson, “Mag-
pick: An Augmented Guitar Pick for Nuanced Control,”
in Proceedings of the 19th Conference on New Interfaces
for Musical Expression (NIME), pp. 65–70 (Porto Alegre,
Brazil) (2019 Jun.).

[11] R. H. Jack, T. Stockman, and A. McPherson, “Ef-
fect of Latency on Performer Interaction and Subjective
Quality Assessment of a Digital Musical Instrument,” in
Proceedings of the 16th International Audio Mostly Con-
ference (AM), pp. 116–123 (Norrköping, Sweden) (2016
Oct.). https://doi.org/10.1145/2986416.2986428.

[12] A. P. McPherson, R. H. Jack, and G. Moro, “Action-
Sound Latency: Are Our Tools Fast Enough?” in Proceed-
ings of the 16th International Conference on New Interfaces
for Musical Expression (NIME), pp. 20–25 (Brisbane, Aus-
tralia) (2016 Jul.).

[13] D. Wessel and M. Wright, “Problems and Prospects
for Intimate Musical Control of Computers,” Com-
put. Music J., vol. 26, no. 3, pp. 11–22 (2002 Sep.).
https://doi.org/10.1162/014892602320582945.

[14] M. Lester and J. Boley, “The Effects of Latency on
Live Sound Monitoring,” presented at the 123rd Convention
of the Audio Engineering Society (2007 Oct.), paper 7198.

[15] Y. Wu, E. Manilow, Y. Deng, et al., “MIDI-
DDSP: Detailed Control of Musical Performance via
Hierarchical Modeling,” presented at the International
Conference on Learning Representations (ICLR) (Online)
(2022 Apr.).

[16] M. Pasini and J. Schlüter, “Musika! Fast Infinite
Waveform Music Generation,” in Proceedings of the 23rd
International Society for Music Information Retrieval Con-
ference (ISMIR), pp. 543–550 (Bengaluru, India) (2022
Dec.).

[17] G. Vigliensoni and R. Fiebrink, “Steering Latent
Audio Models Through Interactive Machine Learning,”
in Proceedings of the 14th International Conference on
Computational Creativity (ICCC), pp. 393–397 (Waterloo,
Canada) (2023 Jun.).

[18] P. Esling, A. Chemla–Romeu-Santos, and A. Bit-
ton, “Generative Timbre Spaces: Regularizing Variational
Auto-Encoders With Perceptual Metrics,” arXiv preprint
arXiv:1805.08501 (2018 Oct.).

[19] M. Pasini, M. Grachten, and S. Lattner, “Bass
Accompaniment Generation Via Latent Diffusion,” in
Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pp. 1166–1170 (Seoul, South Korea) (2024 Apr.).
https://doi.org/10.1109/ICASSP48485.2024.10446400.

[20] A. Carson, A. Wright, J. Chowdhury, V. Välimäki,
and S. Bilbao, “Sample Rate Independent Recurrent Neural
Networks for Audio Effects Processing,” in Proceedings of
the 27th International Conference on Digital Audio Effects
(DAFx), pp. 17–24 (Guildford, UK) (2024 Sep.).

[21] F. Caspe, A. McPherson, and M. Sandler, “FM
Tone Transfer With Envelope Learning,” in Proceed-
ings of the 18th International Audio Mostly Confer-
ence (AM), pp. 116–123 (Edinburgh, UK) (2023 Oct.).
https://doi.org/10.1145/3616195.3616196.

[22] J. Shier, C. Saitis, A. Robertson, and A. McPherson,
“Real-Time Timbre Remapping With Differentiable DSP,”
in Proceedings of the 24th International Conference on
New Interfaces for Musical Expression (NIME), pp. 377–
385 (Utrecht, Netherlands) (2024).

[23] A. Martelloni, A. P. McPherson, and M. Barthet,
“Real-Time Percussive Technique Recognition and Em-
bedding Learning for the Acoustic Guitar,” in Proceedings
of the 24th International Society for Music Information
Retrieval Conference (ISMIR), pp. 121–128 (Milan, Italy)
(2023 Nov.).

[24] N. Privato, G. Lepri, T. Magnusson, and E. T.
Einarsson, “Sketching Magnetic Interactions for Neural
Synthesis,” in Proceedings of the International Conference
on Technologies for Music Notation and Representation
(TENOR), pp. 89–97 (Zurich, Switzerland) (2024 Apr.).

[25] O. Rybakov, N. Kononenko, N. Subrahmanya, M.
Visontai, and S. Laurenzo, “Streaming Keyword Spotting
on Mobile Devices,” in Proceedings of the Annual Confer-
ence of the International Speech Communication Associa-
tion (INTERSPEECH), pp. 2277–2281 (Shanghai, China)
(2020 Oct.). https://doi.org/10.21437/Interspeech.2020-
1003.

[26] A. Défossez, J. Copet, G. Synnaeve, and
Y. Adi, “High Fidelity Neural Audio Compres-
sion,” arXiv preprint arXiv:2210.13438 (2022 Oct.).
https://doi.org/10.48550/arXiv.2210.13438.

[27] C. J. Steinmetz and J. D. Reiss, “Efficient Neural
Networks for Real-Time Analog Audio Effect Modeling,”
arXiv preprint arXiv:2102.06200 (2021 Feb.).

[28] M. Radfar, P. Lyskawa, B. Trujillo, et al., “Conmer:
Streaming Conformer Without Self-Attention for Interac-
tive Voice Assistants,” in Proceedings of the Annual Con-
ference of the International Speech Communication Asso-
ciation (INTERSPEECH), pp. 2198–2202 (Dublin, Ireland)
(2023 Aug.). https://doi.org/10.21437/Interspeech.2023-
2228.

[29] A. Défossez, L. Mazaré, M. Orsini, et al., “Moshi: A
Speech-Text Foundation Model for Real-Time Dialogue,”
arXiv preprint arXiv:2410.00037 (2024 Oct.).

[30] K. Siedenburg and S. McAdams, “Four Dis-
tinctions for the Auditory ‘Wastebasket’ of Timbre,”
Front. Psychol., vol. 8, paper 1747 (2017 Oct.).
https://doi.org/10.3389/fpsyg.2017.01747.

[31] ANSI, “American National Standard Psychoacous-
tical Terminology,” Standard S3.20-1973 (1973 Dec.).

[32] B. Hayes, J. Shier, G. Fazekas, A. McPherson,
and C. Saitis, “A Review of Differentiable Digital Sig-
nal Processing for Music and Speech Synthesis,” Front.
Signal Process., vol. 3, paper 1284100 (2024 Jan.).
https://doi.org/10.3389/frsip.2023.1284100.

[33] M. Carney, C. Li, E. Toh, N. Zada, P. Yu, and J. En-
gel, “Tone Transfer: In-Browser Interactive Neural Audio
Synthesis,” presented at the ACM Conference on Intelligent

252 J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May



PAPERS DESIGNING NEURAL SYNTHESIZERS FOR LOW-LATENCY INTERACTION

User Interfaces (ACM IUI): 2nd Workshop on Human-AI
Co-Creation With Generative Models (HAI-GEN) (Online)
(2021 Apr.).

[34] Y.-J. Luo, K. W. Cheuk, W. Choi, et al., “DisMix:
Disentangling Mixtures of Musical Instruments for Source-
Level Pitch and Timbre Manipulation,” arXiv preprint
arXiv:2408.10807 (2024 Aug.).

[35] J. Engel, C. Resnick, A. Roberts, et al., “Neural
Audio Synthesis of Musical Notes With WaveNet Autoen-
coders,” in Proceedings of the 34th International Confer-
ence on Machine Learning (ICML), pp. 1068–1077 (Syd-
ney, Australia) (2017 Jul.).

[36] N. Mor, L. Wolf, A. Polyak, and Y. Taigman,
“A Universal Music Translation Network,” arXiv preprint
arXiv:1805.07848 (2018 May).

[37] M. Alinoori and V. Tzerpos, “Music-STAR: A Style
Translation System for Audio-Based Re-Instrumentation,”
in Proceedings of the 23rd International Society for Music
Information Retrieval Conference (ISMIR), pp. 419–426
(Bengaluru, India) (2022 Dec.).

[38] L. A. Gatys, A. S. Ecker, and M. Bethge,
“A Neural Algorithm of Artistic Style,” arXiv preprint
arXiv:1508.06576 (2015 Sep.).

[39] A. Bitton, P. Esling, and A. Chemla-Romeu-
Santos, “Modulated Variational Auto-Encoders for Many-
to-Many Musical Timbre Transfer,” arXiv preprint
arXiv:1810.00222 (2018 Sep.).

[40] R. S. Bonnici, M. Benning, and C. Saitis,
“Timbre Transfer With Variational Auto Encoding and
Cycle-Consistent Adversarial Networks,” in Proceedings
of the International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8 (Padua, Italy) (2022 Jul.).
https://doi.org/10.1109/IJCNN55064.2022.9892107.

[41] Y. Wu, Y. He, X. Liu, Y. Wang, and R. B. Dannen-
berg, “Transplayer: Timbre Style Transfer With Flexible
Timbre Control,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5 (Rhodes Island, Greece) (2023 Jun.).
https://doi.org/10.1109/ICASSP49357.2023.10096233.

[42] S. Huang, Q. Li, C. Anil, et al., “TimbreTron: A
WaveNet(CycleGAN(CQT(Audio))) Pipeline for Musical
Timbre Transfer,” in Proceedings of the International Con-
ference on Learning Representations (ICLR), pp. 1508–
1524 (New Orleans, LA) (2019 May).

[43] C.-Y. Lu, M.-X. Xue, C.-C. Chang, C.-R. Lee,
and L. Su, “Play as You Like: Timbre-Enhanced Multi-
Modal Music Style Transfer,” Proc. AAAI Conf. Ar-
tif. Intell., vol. 33, no. 1, pp. 1061–1068 (2019 Jul.).
https://doi.org/10.1609/aaai.v33i01.33011061.

[44] D. K. Jain, A. Kumar, L. Cai, S. Singhal, and V.
Kumar, “ATT: Attention-Based Timbre Transfer,” in Pro-
ceedings of the International Joint Conference on Neural
Networks (IJCNN), pp. 1–6 (Glasgow, UK) (2020 Jul.).
https://doi.org/10.1109/IJCNN48605.2020.9207146.

[45] A. Bitton, P. Esling, and T. Harada, “Vector-
Quantized Timbre Representation,” arXiv preprint
arXiv:2007.06349 (2020 Jul.).

[46] O. Cı́fka, A. Ozerov, U. Şimşekli, and G. Richard,
“Self-Supervised VQ-VAE for One-Shot Music Style

Transfer,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 96–100 (Toronto, Canada) (2021 Jun.).
https://doi.org/10.1109/ICASSP39728.2021.9414235.

[47] L. Comanducci, F. Antonacci, and A. Sarti, “Tim-
bre Transfer Using Image-to-Image Denoising Diffusion
Implicit Models,” arXiv preprint arXiv:2307.04586 (2023
Jul.). https://doi.org/10.48550/arXiv.2307.04586.

[48] V. Popov, A. Amatov, M. Kudinov, V. Gogo-
ryan, T. Sadekova, and I. Vovk, “Optimal Transport in
Diffusion Modeling for Conversion Tasks in Audio Do-
main,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5 (Rhodes Island, Greece) (2023 Jun.).
https://doi.org/10.1109/ICASSP49357.2023.10094854.

[49] M. Mancusi, Y. Halychanskyi, K. W. Cheuk, et al.,
“Latent Diffusion Bridges for Unsupervised Musical Audio
Timbre Transfer,” arXiv preprint arXiv:2409.06096 (2024
Sep.).

[50] T. Kaneko, K. Tanaka, H. Kameoka, and S.
Seki, “iSTFTNet: Fast and Lightweight Mel-Spectrogram
Vocoder Incorporating Inverse Short-Time Fourier Trans-
form,” arXiv preprint arXiv:2203.02395 (2022 Mar.).

[51] D.-Y. Wu1, W.-Y. Hsiao, F.-R. Yang, et al., “DDSP-
Based Singing Vocoders: A New Subtractive-Based Syn-
thesizer and a Comprehensive Evaluation,” in Proceedings
of the 23rd International Society for Music Information Re-
trieval Conference (ISMIR), pp. 76–83 (Bengaluru, India)
(2022 Dec.).

[52] B. Chandra Garai, P. Das, and A. K. Mishra,
“Group Delay Reduction in FIR Digital Filters,” Signal
Process., vol. 91, no. 8, pp. 1812–1825 (2011 Aug.).
https://doi.org/10.1016/j.sigpro.2011.02.005.

[53] A. De Cheveigné and H. Kawahara, “YIN, a Fun-
damental Frequency Estimator for Speech and Music,” J.
Acoust. Soc. Am., vol. 111, no. 4, pp. 1917–1930 (2002
Apr.).

[54] J. Armitage, N. Privato, V. Shepardson, and C. B.
Gutierrez, “Explainable AI in Music Performance: Case
Studies From Live Coding and Sound Spatialisation,” pre-
sented at the 37th Annual Conference on Neural Informa-
tion Processing Systems (NeurIPS): XAI in Action: Past,
Present, and Future Applications Workshop (New Orleans,
LA) (2023 Dec.).

[55] T. Nguyen, “Near-Perfect-Reconstruction Pseudo-
QMF Banks,” IEEE Trans. Signal Process., vol. 42, no. 1,
pp. 65–76 (1994 Jan.). https://doi.org/10.1109/78.258122.

[56] M. Pasini, S. Lattner, and G. Fazekas, “Mu-
sic2Latent: Consistency Autoencoders for Latent Audio
Compression,” arXiv preprint arXiv:2408.06500 (2024
Aug.). https://doi.org/10.48550/arXiv.2408.06500.

[57] M. D. Zeiler, D. Krishnan, G. W. Tay-
lor, and R. Fergus, “Deconvolutional Networks,” in
Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition,
pp. 2528–2535 (San Francisco, CA) (2010 Jun.).
https://doi.org/10.1109/CVPR.2010.5539957.

[58] D. Foster and S. Dixon, “Filosax: A Dataset of An-
notated Jazz Saxophone Recordings,” in Proceedings of the

J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May 253

https://doi.org/10.1109/ICASSP49357.2023.10096233


CASPE ET AL. PAPERS

22nd International Society for Music Information Retrieval
Conference (ISMIR), pp. 205–212 (Online) (2021 Nov.).

[59] L. Callender, C. Hawthorne, and J. Engel, “Im-
proving Perceptual Quality of Drum Transcription With
the Expanded Groove MIDI Dataset,” arXiv preprint
arXiv:2004.00188 (2020 Dec.).

[60] P. A. Tremblay, O. Green, G. Roma, et al.,
“Fluid Corpus Manipulation Toolbox,” Zenodo (2022 Jul.).
https://doi.org/10.5281/zenodo.6834643.

[61] S. Böck and G. Widmer, “Maximum Filter Vibrato
Suppression for Onset Detection,” in Proceedings of the
16th International Conference on Digital Audio Effects
(DAFx), paper 12 (Maynooth, Ireland) (2013 Sep.).

[62] R. Diaz, C. Saitis, and M. Sandler, “Interactive Neu-
ral Resonators,” arXiv preprint arXiv:2305.14867 (2023
May).

[63] F. Caspe, A. McPherson, and M. Sandler, “FM
Tone Transfer With Envelope Learning,” in Proceed-
ings of the 18th International Audio Mostly Confer-
ence (AM), pp. 116–123 (Edinburgh, UK) (2023 Aug.).
https://doi.org/10.1145/3616195.3616196.

[64] J. Chowdhury, “RTNeural: Fast Neural Inferencing
for Real-Time Systems,” arXiv preprint arXiv:2106.03037
(2021 Jun.).

[65] V. Ackva and F. Schulz, “ANIRA: An Archi-
tecture for Neural Network Inference in Real-Time Au-
dio Applications,” in Proceedings of the IEEE 5th
International Symposium on the Internet of Sounds
(IS2), pp. 1–10 (Erlangen, Germany) (2024 Sep.).
https://doi.org/10.1109/IS262782.2024.10704099.

[66] K. Kilgour, M. Zuluaga, D. Roblek, and M.
Sharifi, “Frèchet Audio Distance: A Metric for Evalu-
ating Music Enhancement Algorithms,” arXiv preprint
arXiv:1812.08466 (2019 Jan.).

[67] B. Li, X. Liu, K. Dinesh, Z. Duan, and G.
Sharma, “Creating A Multi-Track Classical Musical
Performance Dataset for Multimodal Music Analysis:
Challenges, Insights, and Applications,” IEEE Trans.
Multimed., vol. 21, no. 2, pp. 522–535 (2019 Feb.).
https://doi.org/10.1109/TMM.2018.2856090.

[68] D. A. Black, M. Li, and M. Tian, “Automatic Iden-
tification of Emotional Cues in Chinese Opera Singing,”
in Proceedings of 13th International Conference on Mu-
sic Perception and Cognition and the 5th Conference for

the Asian-Pacific Society for Cognitive Sciences of Mu-
sic (ICMPC-APSCOM), pp. 250–255 (Seoul, South Korea)
(2014 Aug.).

[69] L. Nunes, M. Rocamora, L. Jure, and L. W. P. Bis-
cainho, “Beat and Downbeat Tracking Based on Rhythmic
Patterns Applied to the Uruguayan Candombe Drumming,”
in Proceedings of the 16th International Society for Music
Information Retrieval Conference (ISMIR), pp. 264–270
(Málaga, Spain) (2015 Oct.).

[70] A. Delgado, “Amateur Vocal Percussion
Dataset,” Zenodo (2019 Jun.). https://doi.org/10.5281/
zenodo.3245959.

[71] E. Moliner, S. Braun, and H. Gamper, “Gaussian
Flow Bridges for Audio Domain Transfer With Unpaired
Data,” arXiv preprint arXiv:2405.19497 (2024 May).

[72] A. Gretton, K. M. Borgwardt, M. J. Rasch, B.
Schölkopf, and A. Smola, “A Kernel Two-Sample Test,”
J. Mach. Learn. Res., vol. 13, no. 25, pp. 723–773 (2012
Mar.).

[73] L. Hantrakul, J. Engel, A. Roberts, and C. Gu, “Fast
and Flexible Neural Audio Synthesis,” in Proceedings of
the 20th International Society for Music Information Re-
trieval Conference (ISMIR), pp. 524–530 (Delft, Nether-
lands) (2019 Nov.).

[74] J. W. Kim, J. Salamon, P. Li, and J. P. Bello,
“CREPE: A Convolutional Representation for Pitch Es-
timation,” arXiv preprint arXiv:1802.06182 (2018 Feb.).

[75] J. Salamon, E. Gómez, D. P. Ellis, and G. Richard,
“Melody Extraction From Polyphonic Music Signals: Ap-
proaches, Applications, and Challenges,” IEEE Signal Pro-
cess. Mag., vol. 31, no. 2, pp. 118–134 (2014 Mar.).

[76] J. J. Webber, C. Valentini-Botinhao, E. Williams,
G. E. Henter, and S. King, “Autovocoder: Fast Wave-
form Generation from a Learned Speech Represen-
tation Using Differentiable Digital Signal Process-
ing,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5 (Rhodes Island, Greece) (2023 Jun.).
https://doi.org/10.1109/ICASSP49357.2023.10095729.

[77] C.-Y. Yu, C. Mitcheltree, A. Carson, et al., “Dif-
ferentiable All-Pole Filters for Time-Varying Audio Sys-
tems,” in Proceedings of the 27th International Conference
on Digital Audio Effects (DAFx), pp. 345–352 (Guildford,
UK) (2024 Sep.).

254 J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May

https://doi.org/10.5281/zenodo.3245959
https://doi.org/10.5281/zenodo.3245959


PAPERS DESIGNING NEURAL SYNTHESIZERS FOR LOW-LATENCY INTERACTION

THE AUTHORS

Franco Caspe Jordie Shier Mark Sandler Charalampos Saitis Andrew McPherson

Franco Caspe is a Ph.D. candidate at the Centre for Dig-
ital Music (Queen Mary University of London) and the
Augmented Instruments Lab (Imperial College). His Ph.D.
research aims to bridge the gap between acoustic instru-
ments and synthesizers, using deep learning as an analysis
tool to capture performance features from instrument au-
dio and as a generation tool for synthetic sound rendering.
He holds an M.Sc. in computer vision and a degree in
electronic engineering. Previously, he worked on real-time
systems for image processing and communications. His
expertise spans signal processing, machine learning, and
audio, focusing on real-time applications and performance-
driven synthesis.

•
Jordie Shier is a third year Ph.D. student in the Artificial

Intelligence and Music (AIM) program based at Queen
Mary University of London, studying under the supervi-
sion of Prof. Andrew McPherson and Dr. Charalampos
Saitis. His research is focused on the development of novel
methods for synthesizing audio and the creation of new
interfaces for interacting with music synthesizers. Prior to
his doctoral studies, Jordie studied computer science and
music at the University of Victoria in Canada, cofounded
a drum education start-up, and performed in the electronic
music duo Napoleon Skywalker.

•
Mark Sandler, Fellow of the Royal Academy of En-

gineering, is Director of the Centre for Digital Music at
Queen Mary University of London, where he is a professor
of signal processing. He has been active in digital audio
and music research since the late 1970s when he started
his Ph.D. in digital audio power amplifiers. Since then,

he has published well over 500 papers across many topics
in digital audio and computer music. Sound Synthesis has
been a particular interest of his since the 1980s, when he
worked with the pioneering British drum synthesizer com-
pany Simmons Electronics. He has been active in artificial
intelligence for music and audio since about 2014. He has
won more than £20 million funding as principal investiga-
tor, published more than 500 papers, and supervised more
than 50 Ph.D. and 20 postdoctoral research assistants.

•
Charalampos Saitis is a lecturer (assistant professor) at

the Centre for Digital Music of Queen Mary University of
London. He studied mathematics and computational mu-
sic acoustics in Athens and Belfast and obtained a Ph.D.
in music technology from McGill University. He is an in-
vestigator of UK Research and Innovation’s £6.5M Centre
for Doctoral Training in Artificial Intelligence and Music
and founding codirector of the International Conference on
Timbre. He has authored several recent publications in the
intersecting fields of cognitive science, musical acoustics,
music informatics, and machine listening.

•
Andrew McPherson is a computing researcher, com-

poser, electronic engineer, and musical instrument de-
signer. He is a professor of design engineering and music
in the Dyson School of Design Engineering, Imperial Col-
lege London, where he leads the Augmented Instruments
Laboratory. Andrew holds undergraduate degrees in both
engineering and music from MIT, an M.Eng. in electrical
engineering from MIT, and a Ph.D. in music composition
from the University of Pennsylvania. Prior to joining Im-
perial in 2023, he was a professor in the Centre for Digital
Music at Queen Mary University of London.

J. Audio Eng. Soc., Vol. 73, No. 5, 2025 May 255


