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Abstract
We introduce an audio plugin implementation of BRAVE, a wave-
form autoencoder presented recently, that affords Neural Audio
Synthesis with low latency and jitter. As a redesign of the well-
known RAVE model, BRAVE introduces a series of architectural
modifications for supporting instrumental interaction with al-
most imperceptible latency (<10 ms) and jitter (~3 ms). By com-
paring both designs, we highlight key architectural differences
between the models that impact their instrumental performance
capability, arguing that no model fits all purposes, and calling
for their careful selection for each interactive design. Finally, we
discuss challenges and opportunities for leveraging low-latency
waveform autoencoders to develop interactive systems, such as
Digital Musical Instruments, that can foster control intimacy
through enhanced responsiveness and space for nuance.
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• Applied computing→ Sound and music computing.
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1 Introduction
Neural Audio Synthesis (NAS), a technique that uses neural net-
works to create data-driven synthesizers that can learn from
audio corpora, has seen widespread adoption in the Digital Mu-
sical Instrument (DMI) design community. Among available al-
gorithms, the RAVE models [2], seem to be a major choice for
integration in interactive systems, with extensive applications
that explore embodiment [15, 21], entanglement [25], agency
[23] and physical interfaces [19], to name a few.

However, this raises a question: why do such varied applica-
tions converge on a single NAS algorithm? 1 We believe this may
be due to its wide integration in audio production and creative
coding platforms such as audio plugins, Max MSP, Pure Data or
SuperCollider [3, 22], and also due to its easy training interface,

1Although there are two main versions, with different architecture and slightly
different audio quality, we consider them both inceptions of a single algorithm as
they have similar capabilities in terms of latency, and learning efficiency.
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which suggests an understandable path of least resistance [17]
for DMI designers. At the same time, the reasons given by the au-
thors revolve around the idea of training efficiency, the presence
of latent spaces, and real-time inference. RAVE is not the only
algorithm with such characteristics [9, 10, 26]: we argue that a
deeper understanding of a few key technical characteristics of
NAS, which we hereby explain within the context of RAVE v1,
can help designers make more informed decisions on the most
suitable algorithm for their specific use case.

For instance, a notable drawback of RAVE models is their la-
tency in the order of hundreds of milliseconds [3, 6, 28], which
makes it impractical for instrumental performance applications
that require low action-to-sound latency and timing stability,
crucial in DMIs for supporting control intimacy, time-keeping,
and developing performance skills and personal style [14]. Ad-
dressing this, BRAVE [6], a recent re-design of RAVE v1, features
suitable latency (< 10ms) and jitter (~3ms) [13], while preserving
key characteristics—signal autoencoding (a.k.a. timbre transfer
[2]) and latent space manipulation.

This paper introduces BRAVE to DMI designers by compar-
ing it to the widely used RAVE v1 model. Leveraging this, we
highlight important characteristics of waveform autoencoders
that impact instrumental performance but are often invisible
to DMI designers, buried in the complicated specifications of
the algorithms. We then introduce an audio plugin 2 for real-
time timbre transfer with BRAVE and conclude with insights on
the challenges and possibilities for designing DMIs with audio
autoencoders that operate near the limit of perceivable latency.

2 Technical Details
2.1 Real-time Inference and Latency
Instrumental performance typically requires low-latency algo-
rithms that process short audio blocks at a high rate. This mini-
mizes the waiting time between input and output, i.e., the buffer-
ing latency, but also limits the available processing time for a
single inference pass [14]. Algorithms, including neural nets, are
assessed for real-time operation by using the Real Time Factor
(RTF), defined as the ratio between the time processing time 𝑡𝑝
and the length of the input 𝑡𝑖 , 𝑅𝑇𝐹 = 𝑡𝑝/𝑡𝑖 . Therefore, a NAS
model requires a 𝑅𝑇𝐹 < 1 for a specific block size to be processed
in real time.

However, even when using short input lengths, there may be
additional sources of latency [6] related to other factors such
as internal delay lines or slow dynamic responses. In the next
section, we analyze how BRAVE tackles the latency sources found
in RAVE.

2Supplemental material and download information can be found at
http://fcaspe.github.io/BravePlugin.

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
http://fcaspe.github.io/BravePlugin


NIME ’25, June 24–27, 2025, Canberra, Australia Caspe et al.

2.2 Architectural Differences
BRAVE is a redesign of RAVE3, aimed to support low-latency
instrumental interaction. In both models, timbre transfer is ac-
complished by feeding an audio signal to a compressing encoder,
which generates a latent vector of a shorter temporal length, but
with a higher number of channels than the input. This vector is
then processed by the decoder, which decompresses it, generating
an audio signal back, with spectral and dynamic characteristics
similar to that of the dataset used to train the model. Both models
feature a similar variational, convolutional autoencoding archi-
tecture, modified in BRAVE to reduce latency. Figure 1 shows
a simplified diagram of the main architectural differences. We
explain them as follows:

Causal Training: Any algorithm that operates within a real-
time constraint has to be causal. RAVE is typically trained in a
non-causal fashion, with a look-ahead of about half a second. For
real-time inference, the model is reconfigured as causal by adding
delay lines within the convolutional layers which increases la-
tency [3]. Conversely, BRAVE is always trained causally and does
not require delay lines.

Lower Compression Ratio: The compression ratio deter-
mines how many audio samples are computed into a single latent
timestep. RAVE, for instance, compresses 2048 audio samples
into a single latent vector. A real-time scenario requires buffering
at least that amount of samples before running a forward pass
on the encoder. BRAVE reduces buffering latency with a smaller
compression ratio of 128 samples. Furthermore, as events in the
input are compressed with much finer granularity, the jitter of
the response is improved.

Reduced Multi-Band Filter Length: RAVE employs a multi-
band decomposition and re-composition Finite Impulse Response
(FIR) filters for input and output respectively [16], with an inter-
band attenuation of 100 dB. Relaxing this constraint down to 40
dB yields shorter filters, which reduces their group delay from
about 512 to 128 samples, at the expense of a slight reduction in
audio quality.

Removed Noise Generator: This generator in RAVE pro-
cesses a noise signal using a time-variant filter controlled by the
model, using FFT windows of 1024 samples. In BRAVE this would
determine the minimum buffering latency for output. Therefore
we do not implement it, as it just "slightly increases the recon-
struction naturalness of noisy signals" [2, p.6].

Reduced number of parameters: BRAVE halves the channel
width of all convolution layers, which yields a total number of
parameters of 4.9 M, in comparison to those of RAVE’s 17.6 M.
Reducing the size of the layers does not inherentlymodify latency,
but improves its RTF considerably in consumer CPUs, especially
at short windows of 128 samples.

Compensated Receptive Field: Modifying the compression
ratio can drastically reduce the receptive field of the model, i.e.,
the memory that stores the temporal context of the model, which
guarantees continuity of the signal across audio blocks. BRAVE
compensates for this by increasing the decoder’s receptive field.
This alters the dynamic properties of its latent space, as we discuss
in Section 3.

BRAVE modifications effectively yield a causal waveform au-
toencoder with audio quality and timbre transfer capabilities
similar to RAVE, but with better content preservation in terms
of pitch and onsets due to the increased temporal resolution of

3To improve readability, for the rest of the document we refer to the model RAVE
v1, simply as RAVE.

its smaller compression ratio. Moreover, BRAVE can perform for-
ward passes in a real-time, block-based fashion, with a latency of
around 10 ms ± 3 ms when run at a sample rate of 44.1 kHz. Small
latency variations may depend on the training data. We refer
readers to the original BRAVE model publication for a thorough
analysis of its audio quality [6] and a comparison with that of
RAVE.

2.3 Real-time Implementation
Our model is compatible with existing tools that support RAVE
in audio production and creative coding, which are based on
the TorchScript runtime4. However, as stated in the original
publication [6], BRAVE shows an RTF > 1 when running at the
condition of minimum latency (128 samples) because it requires
allocating memory at each inference pass. To address this, we
develop a custom C++ inference engine for our model using
RTNeural [7], a library for real-time DNN inference in audio
applications. RTNeural supports causal, block-based inference
on its convolutional layers, and allocates memory only once at
model instantiation, which makes it suitable for inference at high
frame rates. This allows BRAVE to run at an RTF of 0.3 on an
Apple M1 Pro CPU.

We deploy this engine in a JUCE plugin and train on different
open datasets of percussive and melodic instruments [4, 11]. The
plugin features a simple set of controls for model selection, gain
adjustment, and dry/wet controls, for mixing the transformed
audio with the source. Its current GUI is shown in Figure 2.

3 Discussion: Interaction possibilities with
low-latency waveform autoencoders

We believe our BRAVE implementation appears as a new de-
sign primitive in a field historically occupied by traditional low-
latency Music Information Retrieval (MIR) algorithms for music
performance analysis such as fundamental frequency (𝑓0) track-
ers [8] and onset detectors [27], which have been employed in
a variety of music interactive systems with and without neural
networks [5, 13, 18, 24].

By performing live timbre transfer with voice, playing guitar,
or percussion, we find that BRAVE can render definite and am-
biguous sound characteristics of the learned instruments, includ-
ing ambiguous pitch and onsets. Keeping a degree of ambiguity
is crucial for fostering intimate control relationships between
musicians and instruments, where there is space for meaning-
making [12]. Furthermore, ambiguity is an inherent characteristic
of instrumental performance, and a source of headaches when
working with 𝑓0 trackers and onset detectors: consider the ancil-
lary sounds made by hands sliding over the fretboard of a guitar,
or subtle touch of a percussion instrument, or the bowing action
on a violin that elicits high resonances. All these sounds are am-
biguous for a reductionist frame of fundamental frequencies and
amplitudes, and thus, when we execute these actions over such
technical systems, we may perceive missed notes (actions we
expect to generate sound but they do not), ghost notes (sounds
that we do not execute voluntarily), or simply wrong pitch.

This is not to say that just by using a waveform autoencoder
we are free from the representational problems that come with
traditional MIR. Autoencoders learn a hidden representation from
training data that, for our cases, generally aligns well with our
expectations for instrumental performance. This however is not

4https://pytorch.org/docs/stable/jit.html
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Figure 1: BRAVE achieves adequate latency (< 10ms) and jitter ( ∼ 3 ms) by removing RAVE’s noise generator and using
a smaller compression ratio, multiband attenuation, and causal training. The number of parameters is also reduced to
improve its RTF. The compression ratios at different stages of the models are denoted in monospace.

Figure 2: Plugin’s GUI.

guaranteed: in agential realism terms, all representations entail
an act of exclusion [1], and may be met with uncertainty or ambi-
guity by listeners and players even when designers employ them
to stabilize their music performance systems [20]. In this case, a
clear trade-off when using BRAVE is the loss of interoperability
that classic representations of pitch and onsets offer, which for
instance, could be used for driving a wide variety of synthesizers.

Finally, for the case of DMI designers considering latent rep-
resentations and their manipulation, our model illustrates our
argument against using RAVE as a one-size-fits-all tool. Not all
latent spaces behave the same way: in RAVE, much of the dy-
namic information is encoded within each latent vector, resulting
from the encoder’s high compression ratio and receptive field.

As a result, we observe that DMIs manipulating RAVE’s latent
space tend to produce sound dynamics tightly coupled to those
of the controller input [25]. In contrast, due to the increase in the
decoder’s receptive field, BRAVE relies more on the temporal tra-
jectory of a sequence of latent vectors for rendering the learned
dynamics. This changes the properties of the latent space which
could show different transient responses and more decoupled
controller/sound dynamics if manipulated.

4 Conclusion
We hope this short paper can shed light on some of the crucial
architectural characteristics that condition the instrumental per-
formance capabilities of NAS algorithms when implemented in
DMIs, arguing that there is no one-size-fits-all model. We empha-
size that, in the rich landscape of NAS algorithms with potential
for instrumental interaction, RAVE and BRAVE are just two op-
tions among many others. However, we expect our low-latency
implementation of BRAVE can inspire researchers and makers
to explore possibilities for novel and responsive musical inter-
faces that foster intimate control through its ambiguity-rendering
possibilities and low-latency interaction.

5 Ethical Standards
This work did not involve experiments with musicians other
than the first author, hence no institutional ethics approval was
required. However, like all Artificial Intelligence research, our
results and examples may reproduce and obfuscate biases in the
choice of model architecture or training data. To foster trans-
parency, we provide the training code and the audio plugin for
download with models trained on open datasets. For more infor-
mation please visit http://fcaspe.github.io/BravePlugin.
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