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Abstract
Timbre remapping is an approach to audio-to-synthesizer pa-
rameter mapping that aims to transfer timbral expressions from
a source instrument onto synthesizer controls. This process is
complicated by the ill-defined nature of timbre and the complex
relationship between synthesizer parameters and their sonic out-
put. In this work, we focus on real-time timbre remapping with
percussion instruments, combining technical development with
practice-based methods to address these challenges. As a techni-
cal contribution, we introduce a genetic algorithm—applicable to
black-box synthesizers including VSTs and modular synthesiz-
ers—to generate datasets of synthesizer presets that vary ac-
cording to target timbres. Additionally, we propose a neural
network-based approach to predict control features from short
onset windows, enabling low-latency performance and feature-
based control. Our technical development is grounded in musical
practice, demonstrating how iterative and collaborative processes
can yield insights into open-ended challenges in DMI design. Ex-
periments on various audio representations uncover meaningful
insights into timbre remapping by coupling data-driven design
with practice-based reflection. This work is accompanied by an
annotated portfolio, presenting a series of musical performances
and experiments with reflections.

Keywords
Synthesizer Parameter Mapping, Augmented Instruments, Tim-
bre Mapping, Machine Learning, Practice-Based Research

1 Introduction
Digital musical instruments (DMIs) often involve mapping sensor
inputs to synthesizer parameters—a well studied topic [1, 27, 28].
One compelling approach to mapping is to use audio features
captured from an instrumental performance as the primary input.
Such a mapping enables musicians to leverage proficiency on a
familiar instrument to control new sounds, effectively “recycling
virtuosity" [52].

In this work, we explore a method for audio-to-synthesizer
mapping through timbre remapping. The core assumption of
timbre remapping is that relative differences in timbre should

This work is licensed under a Creative Commons Attribution 4.0 International
License.
NIME ’25, June 24–27, 2025, Canberra, Australia
© 2025 Copyright held by the owner/author(s).

be preserved during mappings—that is, that timbral differences
observed between successive notes in a musical phrase are re-
flected in the sound of the synthesizer. This draws on the concept
of timbre analogies [15, 37, 54], or the idea that timbral phrases,
like melodic phrases, can be transposed. In effect, we seek to
transpose timbral phrases from our input instrument onto our
synthesizers. Such a mapping enables deliberate navigation of the
timbre space of a synthesizer from an instrument, emphasizing
the role of timbre as a structuring force in the creation of musical
phrases [35]—particularly salient for percussion [13].

In previous work [45], we designed a timbre remapping sys-
tem for percussion using differentiable digital signal processing
(DDSP) [16], which implemented a differentiable 808 drum syn-
thesizer controlled by a neural network for real-time performance.
DDSP enables DSP synthesizers to be integrated with neural
networks and trained on audio loss functions using gradient-
based optimization; however, restricts synthesizers to differen-
tiable implementations. In this work, we replace gradient descent
with a genetic algorithm, which can be used with arbitrary non-
differentiable synthesizers such as Virtual Studio Technology1
(VST) plugins and hardware synthesizers. Audio features, com-
puted on synthesizer outputs, are used by our genetic algorithm
to search for parameter settings that match timbral differences
observed in recorded drum performances. Offline searches result
in a corpus of synthesizer presets and their associated audio fea-
tures. Real-time, low-latency performance is enabled via neural
networks that are trained to predict audio features captured over
longer temporal windows (i.e., 250ms)—which were used during
search—from features computed on short windows (i.e., 5ms) at
a detected onset.

During the design of this timbre remapping system, other
questions emerged with less obvious solutions. The most press-
ing of these questions relates the use of audio features to rep-
resent sounds and the impact they have on mappings. Often,
audio features do not map to perception in clearly defined ways,
which leads to uncertainty regarding which features are most
salient to include for timbre remapping. Taking inspiration from
previous work that has turned to practice-based methods for nav-
igating complex and open-ended problems in DMI design [10],
we engaged in a collaborative design process with a practicing
percussionist and researcher—the second author of this paper—to
explore this question. We conducted data-driven and practice-
based experiments to investigate audio features as they relate
to timbre remapping and to explore the musical affordances of
our proposed system. Situating our design within the practice
1https://steinbergmedia.github.io/vst3_dev_portal/pages/index.html
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of the second author, which involves augmenting drums with
machine learning, enabled us to reflect on data-driven results
within practice and resulted in meaningful design interventions
and insight into the nature of percussive timbre remapping. An
annotated portfolio [21] of mapping variations and performances
recordings is presented alongside this work on a supplementary
website2, which additionally contains an appendix and code links.

2 Background
2.1 Timbre, Representations, and Analogies
Musical timbre, a concept that has resisted precise definition [31],
has been referred to as the “psychoacoustician’s multidimen-
sional waste-basket category for everything that cannot be la-
belled pitch or loudness” [36]. Studies investigating the percep-
tual differences between instrumental tones have been used to
construct a multi-dimensional representations of timbre, referred
to as a timbre space [23], and acoustic correlates for each dimen-
sion identified [6, 24]. Many audio features that describe timbre
have been proposed [39, 40], and have found broad application,
including in music information retrieval tasks related to percus-
sion instruments [25, 51] and computational musicology studies
on drum kit performances [13].

Research into timbre analogies seeks to identify whether trans-
positions of timbre sequences, similar to how one might trans-
pose a melody, might be a perceptually viable operation. This
concept was first explored by Ehresman and Wessel [15] and
was subsequently proposed as a method for DMI control [55].
Later studies verified the perceptual viability of timbre analogies
[37]. Given a pair of sounds x𝑎 and x𝑏 , they asked participants to
select a sound x𝑑 (from a set of choices) that differed from x𝑐 by
the same amount as x𝑏 differed from x𝑎 . Results showed that x𝑑
could be predicted by a parallelogram model of similarity within
a multi-dimensional timbre space. We use timbre analogies as
the basis for performing timbre remapping in this work.

2.2 Synthesizer Programming and Mapping
Programming synthesizers to achieve desired sonic outcomes
is a challenging process that has drawn considerable research
attention [7, 44, 56]. A common approach is sound matching, an
inverse problem that involves determining synthesizer parameter
settings to reproduce a target sound. Previous work has largely
employed genetic algorithms [34, 50] and deep learning [5, 17,
32, 56]. Genetic algorithms iteratively explore large parameter
spaces with minimal constraints; however, they tend to be slow
and typically solve a single target at a time. Deep learning allows
fast inference after training, but their effectiveness can be limited
by suboptimal parameter loss functions [17].

Our goal is related to, but distinct from, soundmatching: rather
than reproducing a sound, we seek variants of a preset that differ
in timbre by a specified amount. We propose a formulation of a
genetic algorithm to generate datasets of synthesizer parameters
for non-differentiable synthesizers. These datasets can either be
queried directly or used as training data for a neural network.
Evolutionary algorithms have previously been employed to navi-
gate synthesizer parameter spaces; however, primarily focus on
an interactive sound design context [11, 46]. For background on
evolutionary algorithms within a musical context, we refer the
reader to Dahlstedt’s comprehensive overview of the topic [12].

2https://jordieshier.com/projects/nime2025/

Real-time, audio-driven control of synthesizers based on tim-
bral features has been explored with corpus-based concatenative
synthesis [43] and vocal-driven mapping to VSTs [20]. Although
not focused on audio-driven control, Fasciani proposed a system-
atic method for analyzing timbre features in relation to synthesis
parameters to support timbre-to-parameter mappings [19]. A
timbre remapping approach was proposed by Stowell and Plumb-
ley [49], which identified the challenge in mapping between
distinct timbral distributions, and proposed an unsupervised re-
gression to tree to support this mapping. A key difference of our
timbre remapping approach is the use of timbre analogies for
audio-driven control.

2.3 Practice-Based DMI Design
Dahl describes the “problem" of DMI design as a “wicked prob-
lem"—a problem that is complex, lacks clear guidelines, and has
ambiguous success criteria [9]. Practice-based approaches offer a
method for navigating these problems and involve an “iterative
conversation with materials through which problem setting and
problem solving co-occur [10]." A practical example includes the
development of the TANC DMI [57], which involved iterative
cycles of practice and redesign. Practice has also been proposed
as a method for evaluation in DMI design [29], where examina-
tion of user experience in musical context supports reflection on
designs and generation of new ideas.

Technical research can also be practice; Pelinski et al. proposed
the concept of technical practice research as an alternative mode
of knowledge production, prioritizing first-person and real-time
insights [41]. Green et al. use the term practice-led design to de-
scribe an iterative methodology incorporating practice research
and technical research [22]. In contrast with a traditional design
process, they identify a process that involves repeated episodes
of practice, reflection on theories, refinement, and re-application.

3 Design Overview
We approach the design of real-time timbre remapping through a
process of collaborative, iterative prototyping that is grounded in
the musical practice of the second author. In doing so, we aim to
address both practical challenges, such as navigating synthesizer
parameter spaces and implementing a low-latency performance
system, and open-ended problems related to the use of audio
features for timbre remapping. We first outline the main design
problems and then describe our collaborative design process.

3.1 Problems
3.1.1 Navigating Synthesizer Parameter Spaces. We seek synthe-
sizer parameter settings to match specific sonic attributes. Our
initial mappings leveraged DDSP to achieve this task; however,
this approach restricts us to synthesizers that are differentiable,
limiting generalizability. A key question arises: How can we cre-
ate datasets of synthesizer presets for non-differentiable, black-
box3 synthesizers—both software and hardware—that possess
the desired sonic characteristics?

To state this problemmore precisely, given a feature extraction
function 𝑓 (·) that produces a 𝑘-dimensional feature vector x ∈
R𝑘 from a window of audio, we can produce a dataset of𝑀 audio
feature vectors X = {x1, x2, . . . , x𝑀 } from a set of𝑀 individual
drum hits extracted from a recording. Timbre trajectories are then

3A system where the internal workings are opaque. Only the inputs and outputs
can be observed.

https://jordieshier.com/projects/nime2025/
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computed by selecting an anchor sound x𝛼 ∈ X and computing
the feature difference for all items in the dataset:

ΔX = X − 1x𝑇𝛼 (1)
Then, given a synthesizer, which can be described as a function

𝑔(𝜙) that maps from synthesizer parameters 𝜙 to audio, we can
compute synthesized timbre trajectories:

Δy = 𝑓 (𝑔(𝜙)) − 𝑓 (𝑔(𝜙𝛼 )) (2)
where 𝜙𝛼 is an anchor synthesizer preset, which we manually
select in this work. We seek a set of synthesizer parameters
Φ = {𝜙1, 𝜙2, . . . , 𝜙𝑀 } such that the resulting synthesized timbre
trajectoriesmatch those in our input dataset, i.e.,ΔY ≈ ΔX, where
ΔY = {Δy1,Δy2, . . . ,Δy𝑀 } is generated by applying equation (2)
above to all synth parameters in Φ.

3.1.2 Audio Representations for Timbre Remapping. Selecting
audio features for constructing timbre analogies is another chal-
lenge. Although numerous audio features exist and some corre-
late with perception [6], they often do not map directly or consis-
tently to human experience. Multi-dimensional representations
encode a notion that perception is segmented along indepen-
dent axes. For example, features like spectral centroid and lower
MFCCs (minus the 0th coefficient) are chosen for their invariance
properties, such as amplitude-invariance under linear scaling,
which help isolate timbre characteristics independent of loud-
ness or pitch. These properties are attractive for constructing
timbre analogies because they support mathematical operations
where sounds can be translated along certain dimensions while
being held constant along others. However, research shows that
even “basic" sound dimensions interact in complex ways with
timbre [42]. Furthermore, perceptual evidence for these analogies
is limited to certain translation magnitudes [37]. The entirety
of auditory perception does not neatly conform to models. This
leads us to ask: How do we make decisions in light of “perceptual
incorrectness" of our representations when designing mappings?

3.2 Process
The design and experimentation were conducted collaboratively
by the first two authors. Author A is a doctoral researcher study-
ing machine learning and music and has a background in per-
formance with live electronics. Author B is an active performer,
improviser, and researcher experienced with augmented percus-
sion and machine learning in Max/MSP.

Our collaboration began with email exchanges and Zoom calls
in spring 2024, during which a mutual interest in exploring tim-
bre remapping within Author B’s musical-technical practice was
established. Early experiments involved exploring our initial
DDSP-based system and developing a prototype system using
a genetic algorithm. Initial design questions, as outlined above,
began to emerge at this stage. During a second phase of develop-
ment we engaged with the design space of our timbre remapping,
particularly as it relates to the use of audio features. Over the
course of several months in fall 2024 we developed the timbre
remapping system and performed data-driven and practice-based
experiments in an iterative process. Remote dialogue between
authors was facilitated by sharing video recordings of patches,
audio examples, and reflections over email. The final design phase
was an intensive, three-day in-person studio session at QMedia
Open Studios at Queen Mary University of London. We engaged
in practice-based experimentation and reflection through criti-
cal listening and performance, and intervened with our designs.

Figure 1: Snare drum with crotales. Drum trigger and DPA
microphones attached at the top of the left of drum.

Table 1: Selection of synthesizers used in experiments

Synthesizer Format Method Params

808 Snare1 Max Sines + filtered noise 14
Quantussy2 Max Chaotic 9
Derailer3 VST Physical modelling 91
FM24 Max4Live FM 9
Eurorack5 Hardware FM / subtractive 7

1 808-inspired snare drum from [45]
2 Digital emulation of the “central analog brain” of the CocoQuantus Ciat-
Lombarde; see https://ciat-lonbarde.net/ciat-lonbarde/cocoquantus/index.html
3 https://physicalaudio.co.uk/products/derailer/
4 FM2 from Ableton’s Max for Live Essentials Drum Synth collection
5 See supplemental website for description

Drawing from technical practice research [41], we kept audio
and written journals, regularly pausing to reflect and discuss new
insights.

3.3 Context and Materials
During remote collaboration the second author utilized a snare
drum that was optionally extended with crotales (small, tuned
cymbals) placed on the top head, and in-person we used a dif-
ferent snare drum and a cowbell to mimic the crotales. Two
different acoustic sensors were used. The first is an open-source
drum trigger4 based on the Sensory Percussion5 triggers and the
second a DPA 40996. The two sensors can be used separately for
both onset detection and audio feature extraction, or combined,
where the drum trigger is used for onset detection and the DPA
for feature extraction. A photo of the snare drum used during
remote collaboration is shown in Figure 1. We selected a set of
software and hardware synthesizers, outlined in Table 1, aimed

4https://www.cycfi.com/2023/04/nu-drum-sensor/
5https://sunhou.se/
6https://www.dpamicrophones.com/microphones/instrument/4099?variant=29

https://ciat-lonbarde.net/ciat-lonbarde/cocoquantus/index.html
https://physicalaudio.co.uk/products/derailer/
https://www.cycfi.com/2023/04/nu-drum-sensor/
https://sunhou.se/
https://www.dpamicrophones.com/microphones/instrument/4099?variant=29
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Figure 2: Overview of real-time mapping system.

at covering a range of synthesis techniques with varying num-
ber and complexity of parameters—which include time-varying
modulations such as envelopes and low-frequency oscillators.
A complete list of all employed synthesizer parameters can be
found in the appendix. Synthesizers that we regularly use in our
own musical practice include: the Eurorack modular synthesizer
(Author A) and Quantussy (Author B).

4 Timbre Remapping Design
Here we outline the proposed timbre remapping system. The
primary steps involved include:

(1) recording an input dataset for feature extraction;
(2) compute feature differences on dataset;
(3) perform genetic algorithm search with a synthesizer to

match feature differences resulting in a corpus of synthe-
sizer sounds;

(4) train neural networks (timescale regressors) to predict
audio features from onset features;

(5) real-time performance by querying corpus using feature
differences computed on timescale regressor output.

The final playable system is reminiscent of the two-layer map-
ping model proposed by Hunt et al. [28], although the middle
parameter layer in our system represents audio features that can
be manipulated to effect meaningful timbral adjustments, an af-
fordance we found useful in practice. A diagram of our resulting
system is shown in Figure 2. We developed primarily in Max/MSP
using the SP-Tools7 and FluCoMa8 packages, with the GA de-
veloped in JavaScript (ECMAScript 6+) using the v89 package
available in Max 9. Neural network training and hyperparameter
tuning was conducted in Python.

4.1 Audio Feature Extraction
The first step is to record a small dataset (a few hundred drum
strokes) of material from the input instrument, which defines
the range of timbre variance for mapping. Onset detection is
performed using FluCoMa’s AmpSlice object, which selects on-
sets based on a thresholded difference between two time-domain
envelope followers—a fast envelope and a slow envelope. A short

7https://github.com/rconstanzo/SP-tools
8https://www.flucoma.org/
9https://docs.cycling74.com/reference/v8/

window is extracted following a detected onset for feature extrac-
tion. Three different window sizes were considered: 256 samples
(≈ 5.8ms at 44.1kHz), which supports low-latency operation,
4410 samples (100ms) and 11025 samples (250ms), which are used
during the offline search phase and were selected to capture low-
frequency content and the morphology of percussive sounds at
different time scales. Here, we refer to morphology as the time-
varying sonic characteristics of a sound including the amplitude
and spectral evolution.

4.1.1 Audio Features. A selection of audio descriptors were se-
lected based on the second author’s practice and those available
in FluCoMa. These form four sets of multidimensional audio
descriptors, which are outlined in Table 2. All features are com-
puted using frame-based processing. The first-order derivative
over time-varying frames is optionally computed and appended.
The temporal dimension is then reduced using loudness-weighted
summary statistics. Once feature vectors were computed for all
samples in the dataset, we optionally normalized along each di-
mension using the observed minimum and maximum. In practice,
we found normalization improved results for hybrid descriptors
and spectral shape features, but not MFCCs or Mel-bands. See
the appendix for full details of feature extraction.

Each feature set encodes different sonic attributes for com-
parison. The hybrid descriptor set encodes loudness, pitch, and
timbral dependencies. Mel-bands encode loudness dependencies
specific to certain frequency ranges. MFCCs without the 0th co-
efficient have been noted as being relevant to timbre [8], and are
less-sensitive to both pitch and amplitude. The spectral shape fea-
tures provide an alternative perspective on timbre representation
and are also less-sensitive to amplitude.

4.1.2 Feature Difference Vectors. Once a dataset of audio features
X has been created, we compute feature differences with respect
to an anchor sound x𝛼 , which is selected as the median within the
dataset. Concretely, we compute a central sample𝑚 by taking the
median of each feature independently across all samples in X. We
then select x𝛼 as the sample closest to𝑚 using Euclidean distance.
We then create a feature difference dataset ΔX by subtracting the
anchor feature from each item in the input dataset, as described
in Equation (1).

https://github.com/rconstanzo/SP-tools
https://www.flucoma.org/
https://docs.cycling74.com/reference/v8/
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Table 2: Sets of audio descriptors used

Name Features Dimensions Derivative Summarization

Hybrid Descrip-
tors

loudness, spectral centroid, spectral flat-
ness, pitch, pitch confidence

8 yes (except pitch) mean

Mel Bands 40 mel-bands 40 no mean
MFCCs coefficients 1-13 104 yes mean, std, min, max
Spectral Shape centroid, spread, skewness, kurtosis,

rolloff, flatness, crest
14 yes mean

4.2 Genetic Algorithm Corpus Generation
Here we address the problem of creating datasets of synthesizer
presets as described in the problem formulation in Section 3.1.1.

4.2.1 Genetic Algorithm. We use a GA to search for synthesizer
presets, which has no constraint on differentiability. Our initial
efforts followed previous work on synthesizer sound matching
[26, 34] and involved independent searches for each ∆x ∈ ΔX.
We briefly describe the genetic search process for a single target.

The search starts with a population of individuals, i.e., a set of
synthesizer presetsΦ = {𝜙1, 𝜙2, . . . , 𝜙𝑁 }where𝜙𝑖 corresponds to
a single candidate synthesizer preset and 𝑁 is the population size.
Each individual is uniformly randomly initialized 𝜙𝑖 ∼ U(0, 1)
(all synthesizer parameters are normalized). We also include the
anchor preset 𝜙𝛼 in the initial population. Each individual is then
evaluated by first synthesizing the new preset and computing the
synthesized feature difference Δŷ using Equation (2). The fitness
is then calculated using a fitness function L, defined as the mean
absolute error (MAE) between the target feature difference Δx
and the synthesized feature difference Δŷ:

L(Δx,Δŷ) = 1
𝑘

𝑘∑︁
𝑖=1

|Δ𝑥𝑖 − Δ𝑦𝑖 | (3)

where 𝑘 is the dimensionality of the feature space. A fitness value
is computed for each individual in the population.

Following this, each individual is evolved using a set of genetic
operators, which are inspired by biological processes including
genetic mutation and crossover. These operators are applied
to the current population to generate new offspring. Mutation
applies a random modulation to each parameter during each
iteration to discover variations of current solutions, whereas
crossover randomly swaps genes (i.e., individual parameter val-
ues) between two individuals to generate a new offspring. We
found that using a single operator, polynomial mutation [14], pro-
vided the best results in terms of discovering timbre analogies.
Synthesis parameters are in a normalized range [0, 1], leading to
a slightly simplified version of polynomial mutation, which is as
follows:

𝛿 (𝑥𝑝 , 𝑟 ) =

𝛿𝑙 (𝑥𝑝 , 𝑟 ) 𝑟 ≤ 0.5,

𝛿ℎ (𝑥𝑝 , 𝑟 ) otherwise.
(4)

𝛿𝑙 (𝑥𝑝 , 𝑟 ) =
[
2𝑟 + (1 − 2𝑟 ) (1 − 𝑥𝑝 )𝜂+1

] 1
𝜂+1 − 1 (5)

𝛿ℎ (𝑥𝑝 , 𝑟 ) = 1 −
[
2(1 − 𝑟 ) + 2(𝑟 − 0.5) (𝑥𝑝 )𝜂+1

] 1
𝜂+1 (6)

The final mutated value is then computed as follows:

𝑥𝑜 = 𝑥𝑝 + 𝛿 (𝑥𝑝 , 𝑟 ) (7)

where 𝑥𝑝 is the current (parent) parameter value, 𝑥𝑜 is the mu-
tated (offspring) parameter value, 𝑟 is a random number 𝑟 ∼
U(0, 1), and 𝜂 is the polynomial mutation index, which deter-
mines the variance of the mutation. This process is repeated for
a set number of iterations.

4.2.2 Single-Search Multi-Target Corpus Generation. Running
this process on each target from the input dataset is time consum-
ing as it requires𝑀 separate searches. Based on the fact that our
synthesized sounds should be variations of a preset, we hypothe-
sized that it may be possible to generate solutions for all targets
in a single run using variations within an evolving population.

The main problem we faced in single search corpus generation
was how to select individuals for the next population. Elitism is
a common tactic to maintain the best performing individual in a
population without modification—but this breaks down when the
number of targets is greater than the population size, i.e.,𝑀 > 𝑁 .
To ensure adequate coverage of our target dataset, we devised
a method for selecting the next population using 𝑘-Means clus-
tering [33]. The target dataset of size 𝑀 is partitioned into 𝑁

(population size) clusters using 𝑘-Means and representative sam-
ples are selected as those closest to the cluster centroids using
Euclidean distance. During a search, the fitness of each candidate
is evaluated against these representative samples, and the new
candidate is kept if it improves upon the previous best solution
for that representative sample. In parallel, the best solutions for
all targets in the input dataset ΔX are stored and updated during
the search. We also maintain an archive of all candidates evalu-
ated during a search, which provides a much larger and diverse
corpus of synthesizer presets for nearest neighbour mapping
(described in Section 4.4), while still containing solutions based
on the targeted search.

4.2.3 Evaluation. Our evaluation goal was to validate our ap-
proach within the constraints of our practice rather than to pro-
vide a comprehensive evaluation in relation to existing methods.
We used two metrics to assess the GA: average fitness value
and target coverage (the percentage of targets with unique solu-
tions). These reflect our aim to generate distinct, high-quality
solutions for each target. To validate our 𝑘-Means selection ap-
proach we compared with an alternative method inspired by
MAP-Elites [38], which selects individuals for the next popula-
tion through randomly sampling from the set of optimal solutions
assigned to each target. We ran multiple GA runs with the 808
snare synthesizer using a dataset of 267 drum hits. Each run
lasted for 25 iterations with a population size of 100 (∼ 21 min-
utes). The 𝑘-Means selection approach on average outperformed
the random selection method, as shown in Figure 3. These results
show that on average we are able to find unique solutions for
about 40% of the target dataset, although with some variance.
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(a) Fitness Value (smaller values are better)

(b) Target Coverage (larger values are better)

Figure 3: Fitness and target coverage across genetic search
iterations, comparing our 𝑘-Means selection to random
target-based selection. Bold lines show averages; shaded
areas indicate standard deviation.

4.3 Timescale Regression
Following GA corpus generation, we have a dataset of synthesizer
presets paired with their feature differences. However, feature
extraction during the GA search may be computed using win-
dows of 100ms or 250ms, complicating the process of querying
presets in real-time with low-latency from our input audio. To
overcome this issue we train neural networks to predict audio
features computed over longer windows from short windows of
256 samples. It is worth noting that the dimensionality of the
features remains consistent across different window sizes due to
temporal summarization statistics.

Timescale regressors are trained once per instrument, for each
set of audio features, and can be reused across different synthe-
sizers and mappings. Multi-layer Perceptrons (MLP) networks
are trained using a hyperparameter search [3]10. Input and out-
put data is normalized prior to training. A validation set of 20%
is withheld from the training dataset and training is halted if
the validation loss doesn’t improve for 20 epochs. The best re-
sulting neural network with respect to validation loss during
hyperparameter search is saved for inference within FluCoMa.

10For details on the hyperparameter search please refer to our supplemental website.
We release a Python tool alongside this paper to support FluCoMa practitioners
with neural network training.

Table 3: Timescale regressor errors (MAES) for predicting
100ms and 250ms features from 256-sample inputs. Base-
line shows error without regression.

100ms 250ms
Features Baseline Predict Baseline Predict

Hybrid Descrip-
tors

0.48 0.12 0.56 0.15

Mel-Bands 0.20 0.08 0.26 0.12
MFCCs 0.38 0.09 0.56 0.10
Spectral Shape 0.36 0.10 0.40 0.12

4.3.1 Evaluation. To evaluate timescale regressors we trained
regressors for all features mapping from onset features to features
computedwith 100ms or 250mswindows. To verify that timescale
regressors offer a benefit, we benchmark against using the onset
features themselves in place of the longer term features, that is,
we compute the error between the onset features and the longer
windows. Timescale regressors for each feature were trained
using a hyperparameter search, and the best resulting network
based on validation loss was selected for evaluation. Training
was conducted on a dataset of 1233 drum hits, and evaluated
on a separate evaluation dataset of 650 drum hits recorded on
the same drum. Error was computed using the mean absolute
error on normalized feature values, averaged across all hits in the
evaluation datasets. Results are show in Table 3, and highlight
that timescale regressors offer clear improvements.

In addition to numerically validating these regressors, we also
performed qualitative evaluation in practice. We found it useful
to visualize the outputs produced by the timescale regressors on
real-time plots to visually confirm that predicted features follow
contours that matched our perceptual expectations.

4.4 Real-time Timbre Remapping
We now have a corpus of synthesizer parameters, paired with
audio feature difference vectors, and a method to compute longer
term audio features in real-time with low-latency from onset
features. The process of real-time timbre remapping is visually
outlined in Figure 2 and is performed as follows: 1) an onset is
detected from an input stream; 2) audio features are computed on
a window of 256 samples; 3) longer term features, the same used
during the GA search, are predicted using a timescale regressor;
4) the feature difference with respect to the anchor drum x𝛼 is
computed; 5) synthesizer presets are queried from the generated
corpus and synthesized; 6) (optionally) loudness compensation
is applied (described below). We used a nearest neighbour search
with the 𝑘-d tree algorithm [2] in FluCoMa. Training neural
networks to predict synthesizer parameters from features is also
an option; however, we found the nearest neighbour search to
be sufficient for prototyping, supporting faster design iterations.

4.4.1 Loudness Compensation. In parallel with timbre remap-
ping, we built in functionality to adjust the loudness of the syn-
thesized output to map the input. We use loudness, k-weighted,
relative to full-scale (LKFS) [53], implemented in FluCoMa. Loud-
ness for synthesizer presets are stored alongside the feature differ-
ence vectors during evolutionary search. The difference between
the loudness detected during the onset frame of an input and the
loudness of the synthesizer preset is used to adjust the amplitude
of the synthesizer in real-time.
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5 Experiments
We present a set of technical and practice-based experiments
aimed at investigating the nature of audio representations, based
on our inquiry outlined in Section 3.1.2, and to explore themusical
affordances of our timbre remapping system.

5.1 Data-Driven Experiments
In work focused on timbre remapping audio features extracted
from vocal signals Stowell [48] defined a selection criteria for
audio features: robustness, relevancy, and independence. We fo-
cused on robustness in these data-driven experiments and investi-
gate relevancy through practice. Independence between features
is a useful quality for selecting a minimal set of features for
classification-based machine learning tasks; however, in the case
of timbre remapping it is not immediately clear that indepen-
dence is desirable. Audio features that are highly correlated on a
particular acoustic instrument may not necessarily be correlated
on a synthesizer – encoding this relationship across multiple
features may be important for successful timbre remapping.

Robustness measures the stability of audio features across
input gestures that are deemed to be similar. We evaluated our
representations on both acoustic drum signals and synthesizer
sounds using a method outlined by Fasciani et al. [18, 19]. The
metric is the relative mean difference (RMD), which measures
the statistical dispersion of a signal. RMD is defined as:

𝑅𝑀𝐷 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1

��𝑥𝑖 − 𝑥 𝑗
����∑𝑛

𝑖=1 𝑥𝑖
�� (𝑛 − 1)

(8)

where 𝑛 is the number of samples and 𝑥 is the individual fea-
ture being investigated. For drums, we recorded 32 hits with
consistent loudness and strike location with 10 different snare
drum hit locations and 6 different crotale hit locations. We also
recorded hits with variable loudness and consistent strike loca-
tion to query the loudness sensitivity of features. We evaluated
different timescales and tested the three acoustic sensor combi-
nations. For each synth, we generated 100 random presets and
recorded each preset 100 times with the same note and veloc-
ity (if the synth accepted MIDI). Fasciani et al. select individual
audio features if the RMD value is below a threshold. RMD is
scale-invariant, so all RMD values are in a normalized range. We
follow Fasciani et al. in using a threshold of 0.5.

Overall, results were remarkably similar across the drum and
synthesizer sounds. The main takeaways from this analysis is
that derivative features included in the hybrid descriptors and
spectral shape features are not robust, even for repeated synthe-
sizer sounds. The non-derivative features for spectral shape on
the other hand were robust for both loudness consistent and loud-
ness variable datasets, confirming the loudness insensitivity of
these features. Looking at results for different microphone combi-
nations, the combination of the drum sensor and DPA performed
the best, with the DPA by itself also performing well.

Based on these observations, we decided to remove the deriv-
ative features from the spectral shape extractor. We kept deriva-
tives in the hybrid descriptor extractor as a counter example
to investigate whether morphology encoded by these features
would be useful for timbre remapping, despite noisiness.

5.2 Practice-Based Experiments
Practice-based experiments were conducted throughout the de-
sign process. We conducted listening-based reflections using

pre-recorded musical phrases with different variations and per-
formed with our mappings in-studio. Reactions and ideas that
emerged through dialogue were captured via audio recording and
periods of journalling. Reflection on this data surfaced several
key themes, which are summarized here.

5.2.1 Defining Success. Ultimately we evaluated the success of
a mapping based on aesthetic judgements and broad experience
during listening and playing; however, several concrete elements
emerged: 1) Consistency (but not too consistent): noisiness in
mappings was undesirable, however too little variance was also
bad; 2) Repeatability: we were able to reproduce sounds with
intention; 3) Perceptual Alignment: timbral contours matched
our expectations; 4) Plausible; timbral analogies were being
solved through reasonable synthesizer parameterizations.

5.2.2 Inter-Modulations vs Intra-Modulations. We distinguished
between inter-modulations (e.g., hitting the drum vs. hitting
the rim) and intra-instrument modulations (e.g., hitting different
locations on the same drum head). Certain features captured inter-
modulations well but produced overly varied intra-modulations
(hybrid descriptors and MFCCs) and vice versa for others (Mel-
Bands). Overall we found the spectral shape feature to produce
the most balanced mappings.

5.2.3 Direction of Timbre Trajectories. We noticed that for cer-
tain features, particularly with the MFCCs, timbre analogies were
mapped in reverse to our expectations. For example, rim-clicks
sometimes mapped to darker sounding presets instead of brighter
ones. This directional misalignment highlights both our sensi-
tivity to the directionality of timbral changes and to a potential
limitation of MFCCs to represent these timbral translations.

5.2.4 Synthesizer and Performance Dependencies. Each synthe-
sizer exhibited distinct timbre remapping behaviours. The 808
snare often produced unexpected results due to pitch volatil-
ity and excessive noise whereas the chaotic Quantussy synthe-
sizer responded well to timbral remappings, likely because its
parameters are less directly tied to loudness and pitch. Finally,
the performance context mattered: while the physical modelling
synthesizer Derailer produced sonically smeared results in pre-
recorded material, live performance allowed natural adaptations
to its long resonances, result in a rich performance experience.

5.2.5 Importance of Loudness Mapping. Applying loudness com-
pensation to the synthesized results was a simple extension that
we found broadly beneficial. Although some feature extractors
(i.e., hybrid descriptor and Mel-bands) encode loudness, we gen-
erally found that tying loudness to the input was favourable.

5.2.6 Lack of Morphology. In general, we found that morpho-
logical aspects of our input sound, both timbral and amplitude-
based, were poorly mapped onto parameters associated with
time-varying characteristics. Morphology was encoded to a cer-
tain extent through derivative features, however our GA search
was unable to leverage this information effectively.

5.3 Exploration of Musical Affordances
We implemented several mapping variations that explored timbre
remappingwithin a performance context during our collaborative
in-studio sessions. These patches either sought to mitigate a
perceived short-coming of timbre remapping, or explored creative
extensions of it. These patches, with reflections, are shared on
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our supplementary website in the form of an annotated portfolio
with videos: https://jordieshier.com/projects/nime2025/.

6 Discussion
6.1 Evolving Parameter Spaces
The genetic algorithm provided a method to explore diverse
synthesizer spaces with respect to audio features. This method
supported rapid prototyping of mappings with alternative audio
representations over multiple non-differentiable synthesizers,
including hardware synthesizers like Eurorack modulars. Being
agnostic to the target synthesizer enabled swapping synthesiz-
ers with minor configuration—we developed a Max wrapper for
VSTs and hardware synthesizers to support this. However, not
all synthesizers are built the same, and the internal mapping of
parameters to sound generators had a strong bearing on results.
Some of our best results were achieved through thoughtful tun-
ing of parameter ranges, which we did for Quantussy, allowing
for more explicit focus on timbre variations with less-sensitivity
to pitch and loudness.

Speed is a factor with evolutionary algorithms. Most of our GA
runs lasted for about 20 minutes, which involved the evaluation
of 2500 different synthesizer parameters using windows of 250ms
for audio feature extraction. The speed of the GA and reliance on
real-time synthesis (as opposed to offline accelerated synthesis)
is an obvious downside of this approach. Offline and parallelized
synthesis with VSTs is supported using Python VSTwrappers like
DawDreamer [4], although this complicates the process of quickly
generating playable mappings in a creative coding environment
like Max/MSP.

Although evolutionary algorithms are by no means a novel ap-
proach for synthesizer parameter search, we think that a deeper
exploration of how they can be integrated with other machine
learning approaches is an exciting direction, either for the gener-
ation of datasets, like we explored here, or by combining learned
representations to steer evolution [47].

6.2 Negotiating Audio Representations
One of the main goals of our work was to develop a deeper under-
standing of timbre remapping with audio features. Comparing
data-driven insights with practice-based reflections provided us
with a method to better understand the impact of feature selec-
tion for timbre remapping in our musical context. Maximizing
robustness with the spectral shape was effective and generally
resulted in mappings that responded in a balanced way to a wide
range of timbral variations. Extending this work to explore the
relationship between audio features and synthesizer parameters
would be particularly valuable—for example, by systematically
identifying features that both characterize acoustic percussion
instruments and capture meaningful variations on the target
synthesizer. Techniques introduced by Fasciani [19] could likely
be adapted to support this investigation.

Practice-based interventions upon our timbre remappings,
particularly when they were aimed at overcoming shortcom-
ings, provided valuable insights into what worked well and what
didn’t. For instance, morphological control was a particularly
salient shortcoming and we found ourselves trying to address
it by directly mapping audio features from the input to controls
for envelopes to effect more dynamic control over amplitude
shape. A patch involving multiple mapping systems operating on
different timescales highlighted the potential to integrate infor-
mation from distinct temporal segments to enable fine-grained

control of a sound over time. In general, exploration of richer rep-
resentations of sonic morphology—either through exploration of
pre-processing techniques for derivative features or alternative
techniques —and how those map to synthesis parameters could
be a valuable line of future work. One theme that emerged during
our more experimental patching sessions was that of “queryable"
features versus “transferable" features. That is, the question of
what features should be applied to the process of timbre mapping
(queryable) and what features should be directly mapping (trans-
ferable) to the output. Loudness compensation is an example of a
feature that worked well for transferring. Others, such a timbral
transfer or pitch transfer may also be interesting.

7 Conclusions
Timbre remapping is a difficult task. The designer must grapple
with the many possible meanings of the word “timbre”, the mul-
titude of numerical methods for defining or measuring it, the
necessary temporal windows and resulting latency needed to
perform those measurements, and the always-imperfect align-
ment between audio features and human perception. The idea
that a technical specification could encompass all of these factors
sufficiently thoroughly to make timbre remapping into a purely
scientific problem is unlikely; as Jordà writes about digital in-
strument design more generally, timbre remapping proceeds “as
a sort of craftsmanship, that may sometimes produce – in very
exceptional cases – a work of art; no less than music” [30].

This paper has presented a combination of technical and
practice-based contributions toward timbre remapping from acous-
tic to synthetic percussion. On the technical side, the paper
demonstrates how genetic algorithms can address some persis-
tent challenges of discovering relationships between synthesiser
parameter spaces and audio features, and it also proposes a way
to sidestep some of the latency issues of real-time audio feature
analysis by using a neural network to predict features from a
substantially shortened audio window. On the practice-based
side, we show how exploration and iteration led to discoveries
and opportunities that a pure informatics-based approach might
have missed, and we catalogue some of these discoveries in an
annotated portfolio.

8 Ethical Standards
This paper describes a practice-based exploration between the
authors and did not involve experiments with other human par-
ticipants, hence no institutional ethics board review was required.
This work incorporates machine learning techniques, where all
data used in training is generated by the authors themselves.

Acknowledgments
This research is supported by the UKRI Centre for Doctoral Train-
ing in Artificial Intelligence and Music (EP/S022694/1), a UKRI
Frontier Research (Consolidator) Grant (EP/X023478/1, "RUDI-
MENTS"), and by the Royal Academy of Engineering under the
Research Chairs and Senior Research Fellowships scheme. Thank
you to Physical Audio for supporting this research and contribut-
ing research licenses for their audio plugins. Thank you to the
all the reviewers for their thoughtful feedback, which helped
improve the quality of this paper.

https://jordieshier.com/projects/nime2025/


Designing Percussive Timbre Remappings: Negotiating Audio Representations and Evolving Parameter Spaces NIME ’25, June 24–27, 2025, Canberra, Australia

References
[1] D. Arfib, J. M. Couturier, L. Kessous, and V. Verfaille. 2002. Strategies of

Mapping Between Gesture Data and Synthesis Model Parameters Using Per-
ceptual Spaces. Organised Sound 7, 2 (2002), 127–144. https://doi.org/10.1017/
S1355771802002054

[2] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for
Associative Searching. Commun. ACM 18, 9 (1975), 509–517. https://doi.org/
10.1145/361002.361007

[3] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algo-
rithms for Hyper-Parameter Optimization. In Advances in Neural Information
Processing Systems 24.

[4] David Braun. 2021. DawDreamer: Bridging the Gap Between Digital Au-
dio Workstations and Python Interfaces. In Extended Abstracts for the Late-
Breaking Demo Session of the 22nd Int. Society for Music Information Retrieval
Conf.

[5] Fred Bruford, Frederik Blang, and Shahan Nercessian. 2024. Synthesizer Sound
Matching Using Audio Spectrogram Transformers. In Proceedings of the 27th
International Conference on Digital Audio Effects (DAFx24).

[6] Anne Caclin, Stephen McAdams, Bennett K. Smith, and Suzanne Winsberg.
2005. Acoustic correlates of timbre space dimensions: A confirmatory study
using synthetic tones. The Journal of the Acoustical Society of America 118, 1
(2005), 471–482. https://doi.org/10.1121/1.1929229

[7] Mark Cartwright and Bryan Pardo. 2014. SynthAssist: Querying an Audio
Synthesizer by Vocal Imitation. In Proceedings of the International Conference
on New Interfaces for Musical Expression.

[8] Ondřej Cífka, Alexey Ozerov, Umut Şimşekli, and Gaël Richard. 2021. Self-
Supervised VQ-VAE for One-Shot Music Style Transfer. In ICASSP 2021 -
2021 IEEE International Conference on Acoustics, Speech and Signal Processing.
96–100. https://doi.org/10.1109/ICASSP39728.2021.9414235

[9] Luke Dahl. 2012. Wicked Problems and Design Considerations in Composing
for Laptop Orchestra. In Proceedings of the International Conference on New
Interfaces for Musical Expression.

[10] Luke Dahl. 2016. Designing New Musical Interfaces as Research: What’s the
Problem? Leonardo 49, 1 (2016), 76–77. https://www.jstor.org/stable/43834328

[11] Palle Dahlstedt. 2001. Creating and Exploring Huge Parameter Spaces: Inter-
active Evolution as a Tool for Sound Generation. In International Computer
Music Conference.

[12] Palle Dahlstedt. 2004. Sounds Unheard of Evolutionary Algorithms as Creative
Tools for the Contemporary Composer. Ph. D. Dissertation. Chalmers University
of Technology.

[13] Anne Danielsen, Carl Haakon Waadeland, Henrik G. Sundt, and Maria A. G.
Witek. 2015. Effects of instructed timing and tempo on snare drum sound in
drum kit performance. The Journal of the Acoustical Society of America 138, 4
(2015), 2301–2316. https://doi.org/10.1121/1.4930950

[14] Kalyanmoy Deb and Santosh Tiwari. 2008. Omni-optimizer: A generic evo-
lutionary algorithm for single and multi-objective optimization. European
Journal of Operational Research 185, 3 (March 2008), 1062–1087. https:
//doi.org/10.1016/j.ejor.2006.06.042

[15] D Ehresman and David L. Wessel. 1978. Perception of Timbral Analogies.
Technical Report 13. IRCAM.

[16] Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and Adam Roberts.
2020. DDSP: Differentiable Digital Signal Processing. In 8th International
Conference on Learning Representations.

[17] Philippe Esling, Naotake Masuda, Adrien Bardet, Romeo Despres, and Axel
Chemla-Romeu-Santos. 2020. Flow Synthesizer: Universal Audio Synthesizer
Control with Normalizing Flows. Applied Sciences 10, 1 (2020), 302. https:
//doi.org/10.3390/app10010302

[18] Stefano Fasciani. 2012. Voice Features for Control: A Vocalist Dependent
Method for Noise Measurement and Independent Signals Computation. In
Proceedings of the 15th Int. Conference on Digital Audio Effects (DAFx-12).

[19] Stefano Fasciani. 2016. TSAM: a tool for analyzing, modeling, and mapping
the timbre of sound synthesizers. In Proceedings of 13th Sound and Music
Computing Conference.

[20] Stefano Fasciani and Lonce Wyse. 2018. Vocal Control of Sound Synthesis
Personalized by Unsupervised Machine Listening and Learning. Computer
Music Journal 42, 1 (2018), 37–59. https://doi.org/10.1162/comj_a_00450

[21] Bill Gaver and John Bowers. 2012. Annotated Portfolios. Interactions 19, 4
(2012), 40–49. https://doi.org/10.1145/2212877.2212889

[22] Owen Green, Pierre Alexandre Tremblay, and Gerard Roma. 2018. Interdis-
ciplinary Research as Musical Experimentation: A case study in musicianly
approaches to sound corpora. In Proceedings of the Electroacoustic Music Studies
Network Conference.

[23] John M. Grey. 1977. Multidimensional perceptual scaling of musical timbres.
The Journal of the Acoustical Society of America 61, 5 (1977), 1270–1277. https:
//doi.org/10.1121/1.381428

[24] John M. Grey and John W. Gordon. 1978. Perceptual effects of spectral modifi-
cations on musical timbres. The Journal of the Acoustical Society of America
63, 5 (1978), 1493–1500. https://doi.org/10.1121/1.381843

[25] Perfecto Herrera, Amaury Dehamel, and Fabien Gouyon. 2003. Automatic
Labeling of Unpitched Percussion Sounds. In Audio Engineering Society Con-
vention 114.

[26] Andrew Horner, James Beauchamp, and Lippold Haken. 1993. Machine
Tongues XVI. Genetic Algorithms and Their Application to FM Matching
Synthesis. Computer Music Journal 17, 4 (1993), 17–29. https://doi.org/10.

2307/3680541
[27] Andy Hunt and Ross Kirk. 2000. Mapping Strategies for Musical Performance.

In Trends in Gestural Control of Music. IRCAM, 231–235.
[28] Andy Hunt, Marcelo M. Wanderley, and Matthew Paradis. 2003. The Impor-

tance of Parameter Mapping in Electronic Instrument Design. Journal of New
Music Research 32, 4 (2003), 429–440. https://doi.org/10.1076/jnmr.32.4.429.
18853

[29] Andrew Johnston. 2011. Beyond Evaluation: Linking Practice and Theory in
New Musical Interface Design. In Proceedings of the International Conference
on New Interfaces for Musical Expression.

[30] Sergi Jordà. 2005. Digital Lutherie Crafting musical computers for new musics’
performance and improvisation. Ph. D. Dissertation. Universitat Pompeu Fabra.

[31] Carol L Krumhansl. 1989. Why Is Musical Timbre So Hard to Understand?. In
Structure and Perception of Electroacoustic Sound and Music. 43–55.

[32] Gwendal Le Vaillant, Thierry Dutoit, and Sébastien Dekeyser. 2021. Improv-
ing Synthesizer Programming From Variational Autoencoders Latent Space.
In Proceedings of the 24th International Conference on Digital Audio Effects
(DAFx20in21). 276–283. https://doi.org/10.23919/DAFx51585.2021.9768218

[33] Stuart Lloyd. 1982. Least Squares Quantization in PCM. IEEE Transactions on
Information Theory 28, 2 (1982), 129–137. https://doi.org/10.1109/TIT.1982.
1056489

[34] Naotake Masuda and Daisuke Saito. 2021. Quality Diversity for Synthesizer
Sound Matching. In Proceedings of the 24th International Conference on Digital
Audio Effects (DAFx20in21). 300–307. https://doi.org/10.23919/DAFx51585.
2021.9768271

[35] Stephen McAdams. 2019. Timbre as a Structuring Force in Music. In Timbre:
Acoustics, Perception, and Cognition. Springer Handbook of Auditory Research,
Vol. 69. 211–243.

[36] Stephen McAdams and Albert Bregman. 1979. Hearing Musical Streams.
Computer Music Journal 3, 4 (1979), 26–60. https://www.jstor.org/stable/
4617866

[37] Stephen McAdams and Jean-Christophe Cunible. 1992. Perception of Timbral
Analogies. Philosophical Transactions: Biological Sciences 336, 1278 (1992),
383–389. http://www.jstor.org/stable/55908

[38] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating Search Spaces by
Mapping Elites. (2015). https://doi.org/10.48550/arXiv.1504.04909 [Preprint].

[39] Geoffroy Peeters. 2004. A Large Set of Audio Features for Sound Description
(Similarity and Classification) in the CUIDADO Project. Technical Report.
IRCAM.

[40] Geoffroy Peeters, Bruno L. Giordano, Patrick Susini, Nicolas Misdariis, and
Stephen McAdams. 2011. The Timbre Toolbox: Extracting audio descriptors
from musical signals. The Journal of the Acoustical Society of America 130, 5
(2011), 2902–2916. https://doi.org/10.1121/1.3642604

[41] Teresa Pelinski, Andrew McPherson, and Rebecca Fiebrink. 2025. Ways
of knowing, ways of writing: technical practice research in new musical
instrument design. Journal of New Music Research (2025), 1–14. https:
//doi.org/10.1080/09298215.2024.2442348

[42] Charalampos Saitis and Zachary Wallmark. 2024. Timbral brightness percep-
tion investigated through multimodal interference. Attention, Perception, &
Psychophysics 86, 6 (2024), 1835–1845. https://doi.org/10.3758/s13414-024-
02934-2

[43] Diemo Schwarz, Grégory Beller, Bruno Verbrugghe, and Sam Britton. 2006.
Real-Time Corpus-Based Concatenative Synthesis with CataRT. In Proceedings
of the 9th International Conference on Digital Audio Effects (DAFx-06).

[44] Jordie Shier. 2021. The Synthesizer Programming Problem: Improving the Us-
ability of Sound Synthesizers. Master’s thesis. University of Victoria.

[45] Jordie Shier, Charalampos Saitis, Andrew Robertson, and Andrew McPherson.
2024. Real-time Timbre Remapping with Differentiable DSP. In Proceedings of
the International Conference on New Interfaces for Musical Expression.

[46] Zefan Sramek, Arissa J. Sato, Zhongyi Zhou, Simo Hosio, and Koji Yatani. 2023.
Soundtraveller: Exploring Abstraction and Entanglement in Timbre Creation
Interfaces for Synthesizers. In Proceedings of the 2023 ACM Designing Interac-
tive Systems Conference. 95–114. https://doi.org/10.1145/3563657.3596089

[47] Christian J. Steinmetz, Shubhr Singh, Marco Comunità, Ilias Ibnyahya, Shanxin
Yuan, Emmanouil Benetos, and Joshua D. Reiss. 2024. ST-ITO: Controlling Au-
dio Effects for Style Transfer with Inference-Time Optimization. In Proceedings
of the 25th International Society for Music Information Retrieval Conference.

[48] Dan Stowell. 2010. Making music through real-time voice timbre analysis:
machine learning and timbral control. PhD Thesis. Queen Mary University of
London.

[49] Dan Stowell and Mark D Plumbley. 2010. Timbre remapping through a
regression-tree technique. In Proceedings of the 7th Sound andMusic Computing
Conference.

[50] Kivanç Tatar, Matthieu Macret, and Philippe Pasquier. 2016. Automatic Syn-
thesizer Preset Generation with PresetGen. Journal of New Music Research 45,
2 (2016), 124–144. https://doi.org/10.1080/09298215.2016.1175481

[51] Adam Tindale, Ajay Kapur, George Tzanetakis, and Ichiro Fujinaga. 2004.
Retrieval of Percussion Gestures Using Timbre Classification Techniques. In
Proceedings of the 5th International Conference on Music Information Retrieval.

[52] Pierre Alexandre Tremblay and Diemo Schwarz. 2010. Surfing the Waves:
Live Audio Mosaicing of an Electric Bass Performance as a Corpus Browsing
Interface. In Proceedings of the International Conference on New Interfaces for
Musical Expression.

https://doi.org/10.1017/S1355771802002054
https://doi.org/10.1017/S1355771802002054
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1121/1.1929229
https://doi.org/10.1109/ICASSP39728.2021.9414235
https://www.jstor.org/stable/43834328
https://doi.org/10.1121/1.4930950
https://doi.org/10.1016/j.ejor.2006.06.042
https://doi.org/10.1016/j.ejor.2006.06.042
https://doi.org/10.3390/app10010302
https://doi.org/10.3390/app10010302
https://doi.org/10.1162/comj_a_00450
https://doi.org/10.1145/2212877.2212889
https://doi.org/10.1121/1.381428
https://doi.org/10.1121/1.381428
https://doi.org/10.1121/1.381843
https://doi.org/10.2307/3680541
https://doi.org/10.2307/3680541
https://doi.org/10.1076/jnmr.32.4.429.18853
https://doi.org/10.1076/jnmr.32.4.429.18853
https://doi.org/10.23919/DAFx51585.2021.9768218
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.23919/DAFx51585.2021.9768271
https://doi.org/10.23919/DAFx51585.2021.9768271
https://www.jstor.org/stable/4617866
https://www.jstor.org/stable/4617866
http://www.jstor.org/stable/55908
https://doi.org/10.48550/arXiv.1504.04909
https://doi.org/10.1121/1.3642604
https://doi.org/10.1080/09298215.2024.2442348
https://doi.org/10.1080/09298215.2024.2442348
https://doi.org/10.3758/s13414-024-02934-2
https://doi.org/10.3758/s13414-024-02934-2
https://doi.org/10.1145/3563657.3596089
https://doi.org/10.1080/09298215.2016.1175481


NIME ’25, June 24–27, 2025, Canberra, Australia Jordie Shier, Rodrigo Constanzo, Charalampos Saitis, Andrew Robertson, and Andrew McPherson

[53] International Telecommunication Union. 2006. Algorithms to Measure Audio
Programme Loudness and True-Peak Audio Level. ITU-R BS.1770 (2006).

[54] David Wessel, David Bristow, and Zack Settel. 1987. Control of Phrasing and
Articulation in Synthesis. In Proceedings of the International Computer Music
Conference.

[55] David L. Wessel. 1979. Timbre Space as a Musical Control Structure. Computer
Music Journal 3, 2 (1979), 45. https://doi.org/10.2307/3680283

[56] Matthew John Yee-King, Leon Fedden, and Mark d’Inverno. 2018. Automatic
Programming of VST Sound Synthesizers Using Deep Networks and Other
Techniques. IEEE Transactions on Emerging Topics in Computational Intelligence
2, 2 (2018), 150–159. https://doi.org/10.1109/TETCI.2017.2783885

[57] Eoghan Ó Néill and Miguel Ortiz. 2024. From Prototype to Performance
Practice: Reflections on Iterative Instrument Design. In Proceedings of the 19th
International Audio Mostly Conference: Explorations in Sonic Cultures. 439–444.
https://doi.org/10.1145/3678299.3678360

https://doi.org/10.2307/3680283
https://doi.org/10.1109/TETCI.2017.2783885
https://doi.org/10.1145/3678299.3678360

	Abstract
	1 Introduction
	2 Background
	2.1 Timbre, Representations, and Analogies
	2.2 Synthesizer Programming and Mapping
	2.3 Practice-Based DMI Design

	3 Design Overview
	3.1 Problems
	3.2 Process
	3.3 Context and Materials

	4 Timbre Remapping Design
	4.1 Audio Feature Extraction
	4.2 Genetic Algorithm Corpus Generation
	4.3 Timescale Regression
	4.4 Real-time Timbre Remapping

	5 Experiments
	5.1 Data-Driven Experiments
	5.2 Practice-Based Experiments
	5.3 Exploration of Musical Affordances

	6 Discussion
	6.1 Evolving Parameter Spaces
	6.2 Negotiating Audio Representations

	7 Conclusions
	8 Ethical Standards
	Acknowledgments
	References

